BISHOP PROPERTY RESTORATION PLAN ANSON COUNTY, NORTH CAROLINA

North Carolina Ecosystem Enhancement Program Raleigh, North Carolina

Prepared by:

EcoScience Corporation 1101 Haynes Street, Suite 101 Raleigh, North Carolina 27604

September 2004

TABLE OF CONTENTS

1.0	INTF	RODUCTION	1
2.0	MET	HODS	3
3.0	EXIS	STING CONDITIONS	4
	3.1	Physiography, Topography, and Land Use	4
	3.2	Soils	5
	3.3	Jurisdictional Wetlands	6
	3.4	Hydrology	7
		3.4.1 Surface Water	7
		3.4.2 Groundwater	8
	3.5	Stream Characterization	
	3.6	Plant Communities	
	3.7	Protected Species	
		3.7.1 Federally Protected Species	.14
		3.7.2 State Protected Species	.17
4.0	REF	ERENCE STUDIES	.18
	4.1	Reference Channel	.18
	4.2	Reference Forest Ecosystem	.20
5.0	STR	EAM POWER AND SHEAR STRESS STUDIES	.21
	5.1	Discharge	
	5.2	Stream Power, Shear Stress, and Stability Threshold	.21
		5.2.1 Stream Power	.21
		5.2.2 Shear Stress	.22
		5.2.3 Stream Power and Shear Stress Methods and Results	.23
6.0	RES	TORATION PLAN	.25
	6.1	Stream Enhancement/Restoration	.25
		6.1.1 Reconstruction on New Location	.25
		6.1.2 Stream Reconstruction In-Place	.28
		6.1.3 Ford Construction	.29
	6.2	Wetland Enhancement/Restoration	.29
	6.3	Floodplain Soil Scarification	.30
	6.4	Plant Community Restoration	.31
	6.5	Planting Plan	.32
7.0	MON	NITORING PLAN	.34
	7.1	Stream Monitoring	
	7.2	Stream Success Criteria	
	7.3	Hydrology Monitoring	
	7.4	Hydrology Success Criteria	
	7.5	Vegetation Monitoring	
	7.8	Vegetation Success Criteria	
8.0	REF	ERENCES	.37

APPENDICIES

APPENDIX A	FIGURES
APPENDIX B	TABLES
APPENDIX C	EXISTING STREAM DATA
APPENDIX D	REFERENCE DATA
APPENDIX E	CATENA GROUP FRESHWATER MUSSEL SURVEY
APPENDIX F	NOTIFICATION OF JURISDICTIONAL DETERMINATION

LIST OF FIGURES

Figure 1	Site Location	Appendix A
Figure 2		Appendix A
Figure 3	USGS Hydrologic Unit Map	Appendix A
Figure 4	Topography	Appendix A
Figure 5	NRCS Soils Map	Appendix A
Figure 6	Jurisdictional Systems	Appendix A
Figure 7	On-Site Stream Types	Appendix A
Figure 8	Existing Dimension and Plan View	Appendix A
Figure 9	Restoration Plan	Appendix A
Figure 10	Typical Cross Sections	Appendix A
Figure 11	Live Willow Stake Revetments	Appendix A
Figure 12	In-Stream Structures: Cross-Vane	Appendix A
Figure 13	In-Stream Structures: J-Hook	Appendix A
Figure 14	In-Stream Structures: Log-Vane	Appendix A
Figure 15	Permanent Ford Detail	Appendix A
Figure 16	Planting Plan	Appendix A
Figure 17	Conceptual Model of Target Community Patterns	Appendix A
Figure 18	Monitoring Plan	Appendix A

LIST OF TABLES

Table 1	On-Site Soils Mapped by NRCS	5
Table 2A–B	Morphological Characteristics of Existing Channels	Appendix B
Table 3	Morphological Characteristics of Reference Channels	Appendix B
Table 4A-B	Reference Forest Ecosystem	Appendix B
Table 5	Stream Power and Shear Stress Values	24
Table 6A-B	Morphological Characteristics of Reference and Proposed Channels	Appendix B
Table 7	Planting Plan	33

BISHOP PROPERTY RESTORATION PLAN ANSON COUNTY, NORTH CAROLINA

1.0 INTRODUCTION

The North Carolina Ecosystem Enhancement Program (EEP) is currently evaluating stream and wetland restoration opportunities on the Bishop Property Restoration Site located approximately 3 miles north of the Town of Ansonville in northern Anson County, North Carolina (Figure 1). The Bishop Property consists of three parcels, owned by Mr. John Bishop, collectively encompassing approximately 900 acres of land. The proposed restoration area, including approximately 195 acres within the three parcels, has been placed under a conservation easement and will hereafter be referred to as the Site (Figure 2).

The Site is located at the confluence of the Rocky River and the Pee Dee River, immediately upstream from the approximately 8,000-acre Pee Dee National Wildlife Refuge. In the Site vicinity, the Rocky and Pee Dee River floodplains have largely been cleared of forest vegetation and are currently utilized as fertile pasture, hay fields, or agricultural fields (row crop production). The Site has potential to serve as an important wildlife corridor along two major waterways extending to the Pee Dee National Wildlife Refuge.

The Site is primarily utilized for row crop production and recreational activities (hunting and wildlife viewing). Removal of riparian vegetation, dredging/straightening of on-Site streams, annual clearing, plowing, and additions of nutrient fertilizers appear to have resulted in degraded water quality (sediment inputs and agricultural runoff into the Rocky and Pee Dee Rivers), unstable channel characteristics (stream entrenchment, erosion, and bank collapse), and decreased wetland function.

The purpose of this study is to establish stream and wetland enhancement/restoration concepts which will result in benefits to water quality and wildlife by providing stable streams and wetlands within a wildlife corridor located adjacent to two major waterways and an important wildlife refuge. This detailed restoration plan is expected to outline activities to be included in construction planning documents. The objectives of this study include the following:

- Classify the on-Site streams based on fluvial geomorphic principles.
- Identify jurisdictional wetlands and/or hydric soils within the Site boundaries.
- Identify a suitable reference forest, stream, and wetland to model Site restoration attributes.
- Develop a detailed plan of stream and wetland enhancement/restoration activities within the Site.
- Establish success criteria and a method of monitoring the Site upon completion of restoration implementation.

After implementation, restoration activities are expected to provide the following:

- 1. 5,663 linear feet of stream restoration
- 2. 1,190 linear feet of stream enhancement level 1
- 3. 7,306 linear feet of stream enhancement level 2
- 4. 11,250 linear feet of stream preservation
- 5. 5.6 acres of wetland restoration
- 6. 0.9 acres of wetland enhancement
- 7. 10.2 acres of wetland preservation

This document represents a detailed restoration plan summarizing activities proposed within the Site. The plan includes 1) descriptions of existing conditions; 2) reference stream, wetland, and forest studies; 3) restoration/enhancement plans; and 4) Site monitoring and success criteria. Upon approval of this plan by regulatory agencies, engineering construction plans will be prepared and activities implemented as outlined. Proposed restoration activities may be modified during the civil design stage due to constraints such as access issues, sediment-erosion control measures, drainage needs (floodway constraints), or other design considerations.

2.0 METHODS

Natural resource information was obtained from available sources. United States Geological Survey (USGS) 7.5-minute topographic quadrangle (Millstone Lake, NC), United States Fish and Wildlife Service (FWS) National Wetlands Inventory (NWI) mapping, Natural Resource Conservation Service (NRCS) soils mapping for Anson County (NRCS 2000), and recent Anson County aerial photography were utilized to evaluate existing landscape, stream, and soil information prior to on-Site inspection.

Reference stream geometry methods have been used to orient channel reconstruction design. Reference stream and floodplain systems were identified and measured in the field to quantify stream geometry, substrate, and hydrodynamics. Stream characteristics and detailed restoration plans were developed according to constructs outlined in Rosgen (1996), Dunne and Leopold (1978), Harrelson *et al.* (1994), Chang (1988), and State of North Carolina Interagency Stream Mitigation Guidelines (USACE *et al.* 2003). Stream pattern, dimension, and profile under stable environmental conditions were measured along reference (*i.e.* relatively undisturbed) stream reaches and applied to the degraded channel within the Site. Reconstructed stream channels and hydraulic geometry relationships have been designed to mimic stable channels identified and evaluated in the region.

Files at the North Carolina Natural Heritage Program (NHP) were evaluated for the presence of protected species. Characteristic and target natural plant community patterns were classified according to Schafale and Weakley's, *Classification of the Natural Communities of North Carolina* (1990). Plant communities were delineated and described by structure and composition.

Detailed field investigations were performed between September 2003 and May 2004 including generation of Site channel cross-sections, profiles, and plan-views; valley cross-sections; detailed soil mapping; and mapping of on-Site resources. Hydrology, vegetation, and soil attributes were analyzed to determine the status of jurisdictional areas. Jurisdictional wetlands and adjustments to hydric soil boundaries were delineated using Global Positioning System (GPS) technology. Recent (2003) aerial photography was evaluated to determine primary hydrologic features and to map relevant environmental attributes.

Information collected on-Site and in reference ecosystems was compiled in a database and incorporated with field observations to evaluate the on-Site stream under existing conditions. Subsequently, this restoration plan was developed to facilitate restoration success and to provide stream and wetland restoration to the EEP.

3.0 EXISTING CONDITIONS

3.1 Physiography, Topography, and Land Use

The Site is located in northern Anson County near the border of Stanly, Montgomery, and Richmond Counties, approximately 3 miles north of Ansonville, North Carolina. The Site falls in two USGS 14-digit Hydrologic Units (HUs).

The Site is underlain by the Carolina Slate Belt geologic formation, immediately adjacent to the Chatham Group of the Triassic Basin geologic formation, within the Piedmont physiographic province of North Carolina. The hydrophysiographic region is characterized by dissected irregular plains, some hills, linear ridges, and isolated monadnocks (Griffith 2002) (Figure 4). This region is characterized by moderate rainfall with precipitation averaging approximately 47 inches per year (NRCS 2000).

The Site is located within and adjacent to the Rocky River floodplain immediately upstream of the confluence of the Rocky River with the Pee Dee River. Slopes adjacent to the Rocky River floodplain are relatively steep and range in elevation from approximately 320 feet National Geodetic Vertical Datum (NGDV) at the upper reaches of smaller on-Site tributaries to a low of approximately 190 feet NGDV in the lower portions of the Rocky River floodplain (Figure 4).

The Site includes approximately 5,500 linear feet of frontage adjacent to the Rocky River and approximately 23,000 linear feet of channel associated with four additional streams: Camp Branch, Unnamed Tributary (UT) to Camp Branch, Dula Thoroughfare, and UT to Dula Thoroughfare (Figure 2). Camp Branch is characterized as a second-order stream extending through relatively wide, moderately sloped valley (approximately 0.0022 rise/run). Dula Thoroughfare and the UTs are characterized as first-order streams extending through relatively narrow, steeply sloped valleys (approximately 0.022 and 0.0047 rise/run). The drainage area at the Camp Branch outfall is approximately 2.9 square miles. The drainage area at the Dula Thoroughfare and UT outfall are approximately 0.36 and 0.23 square miles, respectively (Figure 4).

The watersheds for Camp Branch, Dula Thoroughfare, and the UTs are characterized predominately by agricultural land (row crops and livestock production) and forest with sparse residential development. Drainage basins for Dula Thoroughfare and the UTs are contained almost completely within property owned by Mr. Bishop or his immediate neighbor. The Camp Branch drainage basin extends upstream and encompasses several state maintained roadways, residential and agricultural structures adjacent to the roadways, and a rail line. Impervious surfaces in drainage basins upstream from the Site are expected to cover less than 5 percent of the land area.

Agricultural row crop production dominates the lower elevation floodplain terraces adjacent to the Rocky River, accounting for approximately 85 percent of the floodplain land area. Streams which cross through the floodplains are generally fringed by a disturbed stream-side assemblage; however, Dula Thoroughfare is devoid of a riparian fringe for much of its reach through the floodplain. As the streams grade upslope toward their headwaters, timber

production is the dominant land use. Forested areas are characterized by a mixture of pine and hardwood species approximately 10 to 15 years old. Recreational activities, specifically hunting, occur throughout the Site and various tree stands and food plots occur throughout the Site and adjacent properties.

Two man-made impoundments located in the UT to Camp Branch stream complex encompass approximately 2.4 acres of land. The smaller impoundment (approximately 0.1 acre) is located at the UT headwaters and the larger impoundment (approximately 2.3 acres) has been created at the outer Camp Branch floodplain edge. These impoundments appear to have been created for irrigation of crops and recreational uses.

3.2 Soils

Site soils have been mapped by the NRCS and include the Badin – Goldston complex, as well as the McQueen, Shellbluff, Tetotum, and Chewacla series (NRCS 2000) (Figure 5). A general description of each soil and its hydric/non-hydric status is included in Table 1.

Series	Hydric Status	Family	Description
Badin Channery Silt Loam (BaB, BaC)	Non-Hydric	Typic Hapludults	moderately deep, well drained, moderately permeable
Badin-Goldston Complex (BgD)	Non-Hydric	Typic Hapludults- Typic Dystrudepts	shallow to moderately deep, well drained, moderate to moderately rapid permeability
McQueen (MrB)	Non-Hydric	Typic Hapludults	deep, well drained, slow permeability
Shellbluff (ShA)	Non-Hydric	Fluventic Dystrudepts	very deep, well drained, moderate permeability
Tetotum (ToA)	Non-Hydric	Aquic Hapludults	very deep, moderately well drained, moderate permeability
Chewacla (ChA)	Non-Hydric; may contain hydric inclusions	Fluventic Dystrudepts	very deep, somewhat poorly drained, moderate permeability

Table 1 – On-Site soils mapped by NRCS

Badin Channery Silt Loam BaB, BaC:

This series is typically found on Piedmont uplands with moderate to steep slopes (2 to 8 percent or 8 to 15 percent). The soil solum is moderately deep and well drained with moderate permeability. Depth to seasonal high water table is greater than 6.0 feet, and depth to bedrock is 20 to 40 inches to soft bedrock and over 40 inches to hard bedrock. Badin Channery Silt Loam typically occurs on upland side slopes adjacent to area streams and tributaries.

Badin-Goldston Complex BgD:

This series shares many characteristics with the Badin Channery Silt Loam described above; however, the addition of Goldston in the complex produces additional ranges for some values. These soils are also found in the Piedmont on slopes of 15 to 25 percent. Depths can range from shallow to moderately deep, and permeability can be moderate to moderately rapid, though typically well drained. Depth to the seasonal high water table is greater than 6.0 feet,

and depth to bedrock varies from 10 to 20 inches and 20 to 40 inches to soft bedrock. Depth to hard bedrock is between 10 to 20 inches and greater than 40 inches. Badin-Goldston Complex occurs at the base of steep slopes adjacent to Dula Thoroughfare.

Chewacla ChA:

These frequently flooded soils can be found in floodplains of the Piedmont, Upper Coastal Plains, and Sandhills. Soils are very deep and somewhat poorly drained with moderate permeability. During the months of November through April the seasonal high water table can be at a depth of 0.5 to 1.5 feet. Depth to bedrock is more than 60 inches. Chewacla soils occur in low elevation depressions within the Rocky River floodplain.

McQueen MrB:

This series, found in the Piedmont, Upper Coastal Plain, and Sandhills along major streams and rivers, is very deep and well drained. Permeability is slow, and the seasonal high water table through the months of January through March is at a depth of 4 to 6 feet. Depth to bedrock is greater than 60 inches. McQueen soils occur in floodplains adjacent to the Rocky River and Camp Branch.

Shellbluff (ShA):

This soil series is also found in floodplains of the Piedmont, Upper Coastal Plain, and Sandhills landscapes. Shellbluff soils are typically very deep and well drained with moderate permeability. Slopes are quite flat, ranging between 0 and 2 percent. From December to March the seasonal high water table can vary between 3 and 5 feet, and depth to bedrock is more than 60 inches. Shellbluff soils occur in crowned agricultural fields within the Rocky River floodplain.

Tetotum (ToA):

These soils are located on low stream terraces in the Piedmont, Upper Coastal Plain, and Sandhills landscapes. Tetotum soils are classified as very deep and moderately well drained with moderate permeability. These soils are found in low slope areas with slopes ranging from 0 to 3 percent. Seasonal high water tables in the months of December to April are between 1.5 and 2.5 feet. Bedrock can be found at depths greater than 60 inches. Tetotum soils occur in low elevation depressions downstream from a man-made pond in the UT to Camp Branch and in the floodplain to Dula Thoroughfare.

3.3 Jurisdictional Wetlands

Jurisdictional areas are defined using the criteria set forth in the U.S. Army Corps of Engineers (USACE) Wetlands Delineation Manual (DOA 1987). Wetlands are defined by the presence of three criteria: hydrophytic vegetation, hydric soils, and evidence of wetland hydrology during the growing season (DOA 1987). Open water systems and wetlands receive similar treatment and consideration with respect to Section 404 review. Site jurisdictional areas include surface water in bank-to-bank streams, vegetated wetlands, and open water ponds.

Site jurisdictional areas were delineated and located using GPS technology between August 27 and Oct 2, 2003 (Figure 6). The delineation was reviewed and approved by the USACE (Steve Lund regional field office representative) on January 13, 2004. Based on the jurisdictional boundary mapping, approximately 15.4 acres of jurisdictional wetlands and 28,518 linear feet of

jurisdictional streams, including 5,500 linear feet of Rocky River frontage, were delineated within the Site.

Two distinct jurisdictional wetlands types occur within the Site boundaries: 1) groundwater seep depressions and 2) shallow surface water conveyances.

Groundwater Seep Depressions

Groundwater seep depressions occur at the upper headwaters of small tributaries and at the outer floodplain edge. These wetlands are formed by surface expression of groundwater over dense, low permeability clays or other impervious sub-surface horizons. On-Site groundwater seep depressions are underlain by loamy to clayey soils which are gleyed in color with frequent mottling, potentially indicating a fluctuating water table. Vegetation in these areas is frequently disturbed by land clearing in support of agriculture or timber harvest and consists of dense thickets of shrub and herbaceous species such as blackberry (*Rubus* sp.), black willow (*Salix nigra*), climbing hempweed (*Mikania scandens*), and tearthumb (*Polygonum sagittatum*).

Shallow Surface Water Conveyances

Shallow surface water conveyances occur in portions of the Rocky River floodplain where streams have been dredged, straightened, and altered from their original flow path. The reach of Dula Thoroughfare across the Rocky River floodplain is characterized by exceedingly low slopes resulting in ponding and sloughing of ditch banks, thereby creating a shallow, wide depression that remains inundated throughout most of the year. Although the area is inundated for extended periods, soils remain brightly colored (approximately 10YR 4/4 to 10 YR 4/6) which is characteristic of Triassic Basin area wetlands. Vegetation in these areas is characterized by row crop production and herbaceous species such as knotweed (*Polygonum* spp.), cat tail (*Typha latifolia*), rushes (*Juncus* spp.), and sedges (*Carex* spp.).

3.4 Hydrology

3.4.1 Surface Water

The primary hydrologic feature at the Site is the Rocky River. The Rocky River is approximately 240 feet in width and 25 feet in depth at the Site boundary. Hydro-electric facilities on the Pee Dee River, located immediately upstream from the confluence of the Rocky River and Pee Dee River, have periodic releases resulting in back-flow conditions in the Rocky River, often leading to fluctuations in the normal hydrologic flow regime. Back-flow conditions affect on-Site surface water flow patterns at the confluence of Site streams with the Rocky River.

Smaller area tributaries initiate as groundwater driven, depressional seepages on slopes adjacent to the Rocky River floodplain. Tributaries descend as first-order streams down moderate to steeply sloped, narrow valleys. As the tributaries coalesce, they form larger second and third order streams. Once the streams enter the Rocky River floodplain, they are generally impacted by agricultural practices, vegetation clearing, and channel dredging/straightening. Upon convergence with the Rocky River, the channels tend to incise to depths consistent with the dominant hydrologic feature, the Rocky River.

Discharge within the Site appears to be dominated by a combination of upstream basin catchments, groundwater flow, and precipitation. Based on regional curves (Harman *et al.* 1999) and infield measurements of channel bankfull cross-sectional area, bankfull discharges for on-Site streams include the following:

	Drainage Area	Bankfull Discharge
Stream Name	<u>(square miles)</u>	(cubic feet per second)
Camp Branch	2.9	192
Dula Thoroughfare	0.4	46
UT to Dula Thoroughfare	0.2	28

Current research indicates bankfull discharge would be expected to occur approximately every 1.3 to 1.5 years (Rosgen 1996).

3.4.2 Groundwater

Groundwater seepage results from upland terrestrial catchments, subsurface lateral groundwater flow, and expression of the groundwater table in jurisdictional wetland pockets or area stream margins. Groundwater seepage is related to the size and characteristics of the catchment basin, while subsurface lateral flow is related to the porosity/conductivity of drainage basin soils. The drainage basin upstream of the Site is characterized largely by mature forest and open pasture with little impervious surface. With the exception of roads and roadside ditches, precipitation is expected to penetrate area soils and enter the groundwater table to be discharged into area wetlands and streams.

Several groundwater seepages areas were identified within the Site. Groundwater seepage areas were delineated as jurisdictional wetlands and are depicted in Figure 6. Groundwater seepage areas are located at two distinct landscape positions: 1) at the upper extend of area tributaries, or 2) at the outer floodplain edge, adjacent to steep valley slopes. Both seepage types occur in depressions induced by soil saturation and function for surface water storage, pollutant removal, wildlife habitat, and nutrient cycling (Marble 1992).

3.5 Stream Characterization

Stream geometry and substrate data have been evaluated to orient stream restoration based on a classification utilizing fluvial geomorphic principles (Rosgen 1996). This classification stratifies streams into comparable groups based on pattern, dimension, profile, and substrate characteristics. Primary components of the classification include degree of entrenchment, width/depth ratio, sinuosity, channel slope, and stream substrate composition. Each stream type is modified by a number from 1 through 6 (example: E6) denoting a stream type which indicates a substrate dominated by 1) bedrock, 2) boulders, 3) cobble, 4) gravel, 5) sand, or 6) silt/clay.

On-Site streams were measured and characterized as E-type (narrow and deep), C-type (wide and shallow), and G-type (gully) channels. The location of each stream type is depicted in Figure 7. Figures 8 through 8I and Table 2A and 2B (Appendix B) depict morphological characteristics of existing on-Site channels. Individual cross-section data and other morphological information are included in Appendix C.

Camp Branch - Reach 1 (E-Type): Upstream of Headcut

<u>Location</u>: Extends from the upstream northern property boundary to a channel headcut which is migrating upstream due to disturbances associated with on-Site land management practices (Figure 8).

Dimension (Figure 8A)

Bankfull Channel Cross Sectional Area - 38.7 feet² Existing Channel Cross Sectional Area - 38.7 to 52.8 feet² (slightly enlarged) Bank Height Ratio -1.1 to 1.3 (slight to moderate erosion hazard) Width/Depth Ratio - 8 -12

Notes: Dimension values for this reach appear suitable for E-type streams in the vicinity.

Pattern Sinuosity - 1.18

Notes: Pattern values for this reach appear suitable for E-type streams in the vicinity.

Profile (Figure 8B) Valley Slope - 0.0047 rise/run Water Surface Slope - 0.0029 rise/run Pool Slope - 0 to 0.0013 rise/run Riffle Slope - 0.0008 to 0.0167 rise/run

Notes: The upper range of riffle slopes are higher than expected, possibly due to headcut migration into the lower portions of the reach.

<u>Substrate</u>: D50 - 7 millimeters (fine gravel)

Camp Branch – Reach 2 (E-Type): Headcut to Ford

Location: Extends downstream from the headcut to an active ford, utilized to access fields north of Camp Branch (Figure 8).

<u>Dimension (Figure 8A)</u> Bankfull Channel Cross Sectional Area - 38.7 feet² Existing Channel Cross Sectional Area - 51 to 62 feet² (nearly twice bankfull cross sectional area) Bank Height Ratio - 1.5 (moderate to high erosion hazard)

Width/Depth Ratio – 8.7 Notes: This reach of Camp Branch is oversized and moderately entrenched.

Pattern Sinuosity - 1.18 Notes: Pattern values for this reach appear suitable for E-type streams in the vicinity.

Profile (Figure 8B) Valley Slope - 0.0047 rise/run Water Surface Slope - 0.0029 rise/run Pool Slope - 0 to 0.007 rise/run Riffle Slope - 0.0042 to 0.0144 rise/run

Notes: The steeper facet slopes may result from headcuts and other knick points in the channel bottom.

<u>Substrate</u>: D50 - 5 millimeters (fine gravel)

Camp Branch – Reach 3 (G-Type): Downstream of Ford

Location: Extends from the ford to a portion of Camp Branch that begins to downcut to the Rocky River (Figure 8).

<u>Dimension (Figure 8C)</u> Bankfull Channel Cross Sectional Area - 42 feet² Existing Channel Cross Sectional Area - 104 to 124 feet² (nearly three times the bankfull cross-sectional area) Bank Height Ratio - 2.2 to 2.4 (high to excessive erosion hazard) Width/Depth Ratio - 6 to 9

Notes: This reach of Camp Branch is oversized and highly entrenched.

Pattern Sinuosity - 1.05

Notes: Straightening of the channel has resulted in a loss of pattern variables such as poolto-pool spacing, meander length, and radius of curvature. Pattern values for this reach are outside the modal concept for stable, E-type streams in the region.

Profile (Figure 8D) Valley Slope - 0.0047 rise/run Water Surface Slope - 0.0041 rise/run Pool Slope - 0.0000 to 0.0020 rise/run Riffle Slope - 0.0011 to 0.0614 rise/run

Notes: Riffle slope to average water surface slope ratios vary between 0.27 and 15 indicating over-steepened riffle slopes. Similarly, pool slope to average water surface slope varies from 0 to 1.6 indicating over-steepened pool slopes. Over-steepened facet slopes result from dredging and straightening of Camp Branch and impacts from land use activities through the reach.

Substrate:

D50 – 13.8 millimeters (medium gravel)

Notes: Silt and clay particles make up 14 percent of the bed material, possibly indicating bimodal sediment transport from eroding channel banks.

Dula Thoroughfare (E-Type): Upstream Reach

Location: Extends downstream from a piped road crossing to the Rocky River floodplain (Figure 8).

<u>Dimension (Figure 8E)</u> Bankfull Channel Cross Sectional Area - 5.1 feet² Existing Channel Cross Sectional Area - 5.1 to 5.5 feet² (slightly enlarged) Bank Height Ratio - 1.0 to 1.1 (low erosion hazard) Width/Depth Ratio - 6.1 to 8.0

Notes: Dimension values for this reach appear suitable for E-type streams in the vicinity.

Pattern Sinuosity - 1.05

Notes: Although sinuosity values are low for stable E-type streams in the area, the valley is relatively steep and narrow, resulting in relatively straight channel development.

Profile (Figure 8F) Valley Slope - 0.0239 rise/run Water Surface Slope - 0.0228 rise/run Pool Slope - 0 to 0.0161 rise/run Riffle Slope - 0.0036 to 0.096 rise/run

Notes: Pool slopes and riffle slopes are relatively steep; however, the ratio of these facet slopes to average water surface slope (average riffle 1.6 and average pool 0.13) indicate stable profile values throughout this reach.

Substrate: D50 – less than 1 millimeter (silt and clay)

Dula Thoroughfare (C-type): Downstream Reach

<u>Location:</u> Contained within the Rocky River floodplain and extends from alluvial fan deposits associated with the upstream reach to the property boundary (Figure 8).

Dimension (Figure 8G)

Bankfull Channel Cross Sectional Area - 5.7 to 8.4 feet²

Existing Channel Cross Sectional Area - 5.7 to 19.7 feet² (slightly enlarged to highly oversized)

Bank Height Ratio - 1.0 to 2.0 (low to excessive erosion hazard) Width/Depth Ratio - 23 to 40

Notes: The large variation in these values results from channel dredging and straightening, impounding of the reach for duck habitat, and low slope of the channel as it migrates through an unnatural channel across the Rocky River floodplain. Dimensional values appear to reside outside the modal concept for stable streams in the area.

Pattern Sinuosity - 1.01

Notes: Dredging and straightening of the channel resulted in no measurable channel features (riffles and pools).

<u>Profile (Figure 8H)</u> Valley Slope - 0.0019 rise/run Water Surface Slope - 0.0019 rise/run

Notes: Pool slopes and riffle slopes were not measurable due to dredging and straightening activities and slackwater conditions through the reach; however, these values are not expected to be within the acceptable range for stable streams in the area.

Substrate:

D50 – less than 1 millimeter (silt and clay)

UT to Dula Thoroughfare (G-type): Upstream Reach

<u>Location</u>: Extends through an eroded section of channel for approximately 195 linear feet at the upper reaches of the stream (Figure 8).

<u>Dimension (Figure 8I)</u> Bankfull Channel Cross Sectional Area – 4.8 feet² Existing Channel Cross Sectional Area – 12.8 feet² (more than 2.5 times bankfull cross sectional area) Bank Height Ratio - 1.9 (excessive erosion hazard) Width/Depth Ratio – 2.8

Notes: This reach of UT to Dula Thoroughfare is oversized and highly entrenched.

Pattern Sinuosity - 1.09

Notes: Although sinuosity values are low for stable E-type streams in the area, the valley is relatively steep and narrow, resulting in relatively straight channel development.

Profile

Valley Slope – Not Measured

Water Surface Slope – Mot Measured

Notes: Pool slopes and riffle slopes are appear relatively steep due to headcut formation within the reach.

<u>Substrate</u>: D50 – Not Measured

UT to Dula Thoroughfare (E-type): Downstream Reach

Location: Extends from the entrenched, upstream reach to a forded crossing of Dula Thoroughfare (Figure 8).

Dimension (Figure 8I)

Bankfull Channel Cross Sectional Area - 4.4 to 5.1 feet² Existing Channel Cross Sectional Area - 6.9 (slightly enlarged) Bank Height Ratio - 1.5 to 2.3 (high to excessive erosion hazard) Width/Depth Ratio - 6

Notes: This reach of UT to Dula Thoroughfare is slightly oversized and highly entrenched. Spoil castings on stream banks and within the adjacent floodplain occur through much of the reach.

<u>Pattern</u> Sinuosity - 1.17

Notes: Shoot cutoffs and channel realignment is prevalent through this reach.

<u>Profile</u> Valley Slope – Not Measured Water Surface Slope – Mot Measured

Notes: Pool slopes and riffle slopes appear relatively steep due to headcut formation within the reach.

<u>Substrate</u>: D50 – Not Measured

3.6 Plant Communities

The Site is characterized by broad expanses of agricultural fields, along with mesic mixed pine/hardwood forest, upland slope forest, bottomland hardwood forest, and game species food plots. Site forests do not exhibit climax conditions due to past timber practices. Primary agricultural crops include corn, cotton, and soy beans, with interspersed patches of sorghum and clover for game species. Invasive species identified in agricultural fields during fallow times or prior to planting of crops consists primarily of morning glory (*Convolvulus arvensis*), clover (*Trifolium campestre*), cocklebur (*Xanthium strumarium*), and sicklepod (*Cassia obtusifolia*).

Mesic mixed pine/hardwood forest occurs adjacent to undisturbed streams descending from slopes adjacent to the Rocky River floodplain. The community occurs as narrow bands adjacent to smaller tributaries such as UT to Camp Branch, the upper reaches of Dula Thoroughfare, and the UT to Dula Thoroughfare. Species present include loblolly pine (*Pinus taeda*), red maple (*Acer rubrum*), American sycamore (*Platanus occidentalis*), green ash (*Fraxinus pennsylvanica*), and hackberry (*Celtis laevigata*). Vines present within this community include poison ivy (*Toxicodendron radicans*), greenbriar (*Smilax rotundifolia*), and muscadine (*Vitus rotundifolia*).

Upland slope forest occurs on steep, dry slopes adjacent to floodplains and includes species such as white oak (*Quercus alba*), water oak (*Quercus nigra*), Virginia pine (*Pinus virginiana*), and various hickories (*Carya* spp.). Understory species include red maple, winged sumac (*Rhus copallinum*), and dogwood (*Cornus florida*) while vines present include poison ivy and muscadine.

Bottomland hardwood forest is located in moist, frequently flooded flats adjacent to the Rocky River and Camp Branch. This community is characterized by species such as American sycamore, black willow, green ash, American elm (*Ulmus americana*), tulip poplar (*Liriodendron tulipifera*), and sugarberry (*Celtis laevigata*). The shrub component of this community includes Chinese privet (*Ligustrum sinense*), Japanese honeysuckle (*Lonicera japonica*), red maple, sweetgum, and muscadine.

3.7 Protected Species

3.7.1 Federally Protected Species

Species with the Federal classification of Endangered (E), Threatened (T), or officially Proposed (P) for such listing are protected under the Endangered Species Act (ESA) of 1973, as amended (16 U.S.C. 1531 *et seq.*). The term "Endangered species" is defined as "any species which is in danger of extinction throughout all or a significant portion of its range", and the term "Threatened species" is defined as "any species which is likely to become an Endangered species within the foreseeable future throughout all or a significant portion of its range" (16 U.S.C. 1532).

The following Federally protected species are listed for Anson County (5 February 2003 FWS list):

Common Name	Scientific Name	<u>Status</u>
Bald eagle	Haliaeetus leucocephalus	Т
Red-cockaded woodpecker	Picoides borealis	Е
Carolina heelsplitter	Lasmigona decorata	Е
Schweinitz's sunflower	Heilanthus schweinitizii	E

Bald Eagle

The bald eagle is a large raptor with a wingspan greater than 6 feet. Adult bald eagles are dark brown with a white head and tail. Immature eagles are brown with whitish mottling on the tail, belly, and wing linings. Bald eagles typically feed on fish but may also take birds and small mammals. In the Carolinas, nesting season extends from December through May (Potter *et al.* 1980). Bald eagles typically nest in tall, living trees in a conspicuous location near open water. Eagles forage over large bodies of water and utilize adjacent trees for perching (Hamel 1992). Disturbance activities within a primary zone extending 750 to 1500 feet from a nest tree are considered to result in unacceptable conditions for eagles (USFWS 1987). The FWS recommends avoiding disturbance activities, including construction and tree-cutting, within this primary zone. Within a secondary zone, extending from the primary zone boundary out to a distance of 1.0 mile from a nest tree, construction and land-clearing activities should be restricted to the non-nesting period. The FWS also recommends avoiding alteration of natural shorelines where bald eagles forage, and avoiding significant land-clearing activities within 1500 feet of known roosting sites.

The Site is located near open water systems which may be suitable for bald eagle feeding habitat. However, on-Site perching and nesting trees are limited to a disturbed, narrow fringe (approximately 25 to 50 feet in width) adjacent to the Rocky River. NHP records show the nearest elemental occurrence of bald eagle approximately 3.1 miles north of the Site, immediately south of Lake Tillery's Norwood Dam. NHP records and a lack of perching and nesting habitat indicate that, this project is not expected to adversely effect known populations of Bald Eagle.

BIOLOGICAL CONCLUSION

NO EFFECT

Red-Cockaded Woodpecker

This small woodpecker (7 to 8.5 inches in length) has a black head, prominent white cheek patches, and a black-and-white barred back. Males often have red markings (cockades) behind the eye, but the cockades may be absent or difficult to see (Potter *et al.* 1980). Primary nest sites for red-cockaded woodpeckers include open pine stands greater than 60 years of age with little or no mid-story development. Foraging habitat is comprised of open pine or pine/mixed hardwood stands 30 years of age or older (Henry 1989). Nest cavities are constructed in the heartwood of living pines, generally older than 70 years, which have been infected with red-heart disease. Nest cavity trees tend to occur in clusters, which are referred to as colonies (USFWS 1985). The woodpecker drills holes into the bark around the cavity entrance, resulting in a shiny, resinous buildup around the entrance that allows for easy detection of active nest trees. Ideal nesting and foraging sites for this woodpecker include pine flatwoods or pine-dominated savannas which have been maintained by frequent natural or prescribed fires. Development of a thick understory may result in abandonment of cavity trees.

Field investigations indicate no suitable nesting or foraging habitat (pine stands greater than 30 years of age) within, or adjacent to, the Site. Based on NHP records, observations conducted during field investigations, and existing conditions of the Site, this project is not expected to adversely effect known populations of red-cockaded woodpecker.

BIOLOGICAL CONCLUSION

Carolina Heelsplitter

The Carolina heelsplitter has an ovate, trapezoid shaped, unsculptured shell which grows to a maximum of approximately 4.5 inches length, by 2.7 inches height, and 1.5 inches in width (USFWS 1996). The shell varies in color from a greenish brown to dark brown on the outer surface and is often pearly to whitish blue, grading to orange on the inside surface. The dorsal margin is straight and may end in a slight wing, and the umbo is flattened. Beak sculpture is depressed and double looped, extending slightly past the hinge line. Lateral teeth are generally, thin and pseudo-cardinal teeth are lamellar and parallel to the dorsal margin (TSCFTM 1990).

Historically, this species was reported in the Abbeville district of South Carolina and Mecklenburg County in North Carolina (Clarke 1985). The Abbeville district is bordered on the south by the Savannah River and on the north by the Saluda River. Presently the species range is limited to only six small streams and one small river. The heelsplitter is usually found in mud, muddy sand, or muddy gravel substrates along stable, well-shaded stream banks (Keferl and Shelly 1988). Currently, the heelsplitter is found in only two small remnant populations in North Carolina: 1) a tributary (Goose Creek) to the Rocky River located in Union County and 2) in a tributary (Waxhaw Creek) to the Catawba River located in Union County (USFWS 2003).

NHP records indicate that this species has not been documented within 2.0 miles of the Site. However, the Site is located within the Rocky River drainage basin, and portions of Site streams are characterized by stable, vegetated stream banks; therefore, detailed surveys for presence of this species were necessary prior to initiation of Site implementation.

The Catena Group, Inc was retained to complete a field survey for the Carolina heelsplitter in the waters of Camp Branch, UT to Camp Branch, Dula Thoroughfare, UT to Dula Thoroughfare, and Rocky River. It was found that the streams surveyed were generally not suitable as freshwater mussel habitat, and no Carolina Heelsplitter mussels were found in the survey. There is a slight possibility that mussel populations exist downstream of the project site on the Rocky River, but it is unlikely that these populations include the Carolina Heelsplitter. For this reason, the Catena Group anticipates the stream mitigation within the Bishop tract to be "**Not Likely To Adversely Effect**" the Carolina Heelsplitter (Freshwater Mussel Survey, Appendix E).

BIOLOGICAL CONCLUSION

NOT LIKELY TO ADVERSELY EFFECT

Schweinitz's Sunflower

Schweinitz's sunflower is an erect, unbranched, rhizomatous, perennial herb that grows to approximately 6 feet in height. The stem may be purple and is usually pubescent; however, the stems are sometimes nearly smooth. Leaves are sessile, opposite on the lower stem but alternate above and are lanceolate in shape, averaging 5 to 10 times as long as wide. The leaves are rather thick and stiff, with a few small serrations. The upper leaf surface is rough and

the lower surface is usually pubescent with soft white hairs. Schweinitz's sunflower blooms from September to frost. Flower heads are yellow and approximately 0.6 inches in diameter. The current range of this species is within 60 miles of Charlotte, North Carolina, occurring on upland interstream flats or gentle slopes. The plants usually occur in soils that are thin or clay in texture. The species needs open areas protected from shade or excessive competition, reminiscent of Piedmont prairies. Disturbances such as fire maintenance or regular mowing help sustain preferred habitat (USFWS 1994).

NHP records indicate that this species has not been documented within 2.0 miles of the Site. Schweinitz's sunflower needs open areas protected from shade or excessive competition, reminiscent of Piedmont prairies. Roadside edges have been maintained as an open herbaceous community and appear to be suitable habitat for Schweinitz's sunflower. Agricultural field edges may provide additional habitat, providing that they are not intensively maintained and that competition from agricultural weeds is not excessive. Detailed surveys for this species were conducted on September 21 and 22, 2004, using systematic transects along all possible habitat areas. No specimens of Schweinitz's sunflower were found. Based on NHP records, field surveys, and professional judgment, this project will not affect Schweinitz's sunflower.

BIOLOGICAL CONCLUSION

NO EFFECT

3.7.2 State Protected Species

Plant and animal species which are on the North Carolina State list as Endangered (E), Threatened (T), Special Concern (SC), Candidate (C), Significantly Rare (SR), or Proposed (P) (Amoroso 2002) receive limited protection under the North Carolina Endangered Species Act (G.S. 113-331 *et seq.*) and the North Carolina Plant Protection Act of 1979 (G.S. 106-202 *et seq.*). A records search of NHP files indicates one element occurrence within 2.0 miles of the Site. The thin-pod white wild indigo (*Baptisia albescens*) is not federally listed; however, it is listed in North Carolina as SR-P* (-P = species at the periphery of its range in North Carolina, * = historic record, not seen since 1979). Restoration activities are not expected to adversely affect this species.

4.0 REFERENCE STUDIES

4.1 Reference Channel

A fundamental concept of stream classification entails the development and application of regional reference curves to stream reconstruction and enhancement. Regional reference curves can be utilized to predict bankfull stream geometry, discharge, and other parameters in altered systems. Development of regional reference curves for North Carolina was initiated in 1995. The curves characterize a broad range of streams within the Piedmont physiographic province. Small watersheds or deviations in valley slope, land use, or geologic substrate may not be accurately described by the curves; therefore, verification of individual watersheds may be necessary. On-Site and off-site reference reaches have been utilized in conjunction with regional curves for detailed planning and characterization of this restoration project.

In order to develop proposed geometric parameters for on-Site, degraded channels, three nearby streams were measured for reference. The primary reference reaches for larger, lower slope on-Site channels are located 1) within Camp Branch at the upper on-Site reaches of the channel and 2) approximately 35 miles northwest of the Site on an unnamed tributary to Crane Creek. These reference streams are characterized by E-type channels.

The primary reference reach for smaller, higher slope on-Site channels is located approximately 34 miles west of the Site on an unnamed tributary to Reedy Creek. This reference stream is characterized as an E-type channel.

Table 3 (Appendix B) includes a summary of dimension, profile, and pattern data for the reference reaches used to establish reconstruction parameters. Channel cross-sections were measured at systematic locations and stream profiles were developed via laser level and GPS. Stream substrates were quantified through systematic pebble counts along the reference reach. Individual cross-section data and other morphological information are included in Appendix D.

Initially, reference streams were visited and classified by stream type (Rosgen 1996). This classification stratifies streams into comparable groups based on geometric characteristics. Reference reaches identified in the vicinity were characterized primarily as E-type (highly sinuous) channels with sand or gravel substrate. E-type streams are slightly entrenched, highly sinuous (>1.5) channels which exhibit high meander width ratios (belt width/bankfull width). In North Carolina, E-type streams occur in narrow to wide valleys with well-developed alluvial floodplains (Valley Type VIII). These streams exhibit a sequence of riffles and pools associated with a sinuous flow pattern.

Dimension

Camp Branch - Reach 1 (E-Type): Upstream of Headcut (Figure 8) Bankfull Channel Cross Sectional Area – 38.7 feet² Existing Channel Cross Sectional Area – 38.7 to 44.1 feet² (slightly enlarged) Bank Height Ratio – 1.0 to 1.3 (slight erosion hazard) Width/Depth Ratio – 8 to 12

UT to Crane Creek

Bankfull Channel Cross Sectional Area – 20.5 feet² Existing Channel Cross Sectional Area – 23.5 to 30.7 feet² (slightly enlarged) Bank Height Ratio – 1.1 to 1.2 (low erosion hazard) Width/Depth Ratio – 5 to 6

UT to Reedy Creek

Bankfull Channel Cross Sectional Area – 15.5 feet² Existing Channel Cross Sectional Area – 14.2 to 20.6 feet² (slightly enlarged) Bank Height Ratio - 1.0 to 1.2 (low erosion hazard) Width/Depth Ratio – 6 to 8

Pattern

Camp Branch - Reach 1 (E-Type): Upstream of Headcut (Figure 8) Sinuosity - 1.18

UT to Crane Creek

Sinuosity - 1.8

UT to Reedy Creek

Sinuosity - 1.55

Profile **Profile**

Camp Branch - Reach 1 (E-Type): Upstream of Headcut (Figure 8) Valley Slope – 0.0047 rise/run Water Surface Slope – 0.0029 rise/run Riffle Slope – 0.0008 to 0.0167 rise/run Pool Slope – 0 to 0.0013 rise/run

UT to Crane Creek

Valley Slope – 0.0025 rise/run Water Surface Slope – 0.0014 rise/run Riffle Slope – 0.0006 to 0.0033 rise/run Pool Slope – 0 to 0.0006 rise/run

UT to Reedy Creek

Valley Slope – 0.0172 rise/run Water Surface Slope – 0.0111 rise/run Riffle Slope – 0.0105 to 0.0221 rise/run Pool Slope – 0.0016 to 0.0182 rise/run

Substrate:

Camp Branch - Reach 1 (E-Type): Upstream of Headcut (Figure 8) D50 – 7.2 millimeters UT to Crane Creek D50 – 1.9 millimeters

UT to Reedy Creek D50 – 0.05 millimeters

4.2 Reference Forest Ecosystem

According to Mitigation Site Classification (MiST) guidelines (EPA 1990), Reference Forest Ecosystems (RFEs) must be established for restoration sites. RFEs are forested areas on which to model restoration efforts of the restoration site in relation to soils, hydrology, and vegetation. RFEs should be ecologically stable climax communities and should represent believed historical (pre-disturbance) conditions of the restoration site. Quantitative data describing plant community composition and structure are collected at the RFEs and subsequently applied as reference data for design of the restoration site planting scheme.

There were two RFE areas chosen to guide plant community restoration within the on-Site floodplain, channel banks, and adjacent floodplain slopes. The RFEs are both found within the Southern Outer Piedmont Ecoregion, one west and one northwest of the Site. Both RFEs support plant community, landform, and hydrological characteristics that restoration efforts will attempt to emulate. Circular, 0.1-acre plots were randomly established within the selected RFEs. Data collected within each plot include 1) tree, shrub, and herb species composition; 2) number of stems for each tree and shrub species; and 3) diameter at breast height (DBH) for each tree and shrub species. Field data (Table 4A and 4B [Appendix B]) indicate importance values (IV) of dominant tree species calculated based on relative density, dominance, and frequency of tree species composition (Smith 1980). Hydrology, surface topography, and habitat features were also evaluated.

The northwestern RFE is located in the floodplain of the UT to Crane Creek in Rowan County, North Carolina. Three 0.1-acre plots were established which best characterize expected steady-state forest composition. Forest vegetation was dominated by swamp chestnut oak (*Quercus michauxii*) (IV=0.17), green ash (IV=0.13), American elm (IV=0.10), and shagbark hickory (*Carya ovata*) (IV=0.09) (Table 4A [Appendix B]). Portions of the canopy were also dominated by willow oak (*Quercus phellos*), boxelder (*Acer negundo*), tulip poplar, black tupelo (*Nyssa sylvatica*), and red maple.

The western RFE is located in the floodplain of Reedy Creek in Mecklenburg County, North Carolina. Within the RFE, vegetative sampling at four 0.1-acre plots indicate that forest tree vegetation was dominated by tulip poplar (IV=0.12), American elm (IV=0.10), northern red oak (*Quercus rubra*) (IV=0.08), and black walnut (*Juglans nigra*) (IV=0.07) (Table 4B [Appendix B]). Other, less dominant tree species within the sample plots were green ash, boxelder, and American sycamore.

5.0 STREAM POWER AND SHEAR STRESS STUDIES

5.1 Discharge

Discharge estimates for the Site utilize an assumed definition of "bankfull" and the return interval associated with the bankfull discharge. For this study, the bankfull channel is defined as the channel dimensions designed to support the "channel forming" or "dominant" discharge (Gordon *et al.* 1992). Research indicates that a stable stream channel may support a return interval for bankfull discharge, or channel-forming discharge, between 1 to 2 years (Gordon *et. al.* 1992, Dunne and Leopold 1978). The methods of Rosgen (1996) indicate calibration of bankfull dimensions based on a potential bankfull return interval between 1.3 and 1.5 years for rural conditions.

Discharge within the Site appears to be dominated by a combination of upstream basin catchment, groundwater flow, and precipitation. Based on regional curves (Harman *et al.* 1999), the bankfull discharge for a 2.9 square mile watershed is expected to average approximately 192 cubic feet per second. Current research estimates a bankfull discharge of 192 cubic feet per second would be expected to occur approximately every 1.3 to 1.5 years (Rosgen 1996).

5.2 Stream Power, Shear Stress, and Stability Threshold

5.2.1 Stream Power

Stability of a stream refers to its ability to adjust itself to in-flowing water and sediment load. One form of instability occurs when a stream is unable to transport its sediment load, leading to aggradation, or deposition of sediment onto the stream bed. Conversely, when the ability of the stream to transport sediment exceeds the availability of sediments entering a reach, and/or stability thresholds for materials forming the channel boundary are exceeded, erosion or degradation occurs.

Stream power is the measure of a stream's capacity to move sediment over time. Stream power can be used to evaluate the longitudinal profile, channel pattern, bed form, and sediment transport of streams. Stream power may be measured over a stream reach (total stream power) or per unit of channel bed area. The total stream power equation is defined as:

$\Omega = \rho g Q s$

where Ω = total stream power (ft-lb/s-ft), ρ = density of water (lb/ft³), g = gravitational acceleration (ft/s²), Q = discharge (ft³/sec), and s = energy slope (ft/ft). The specific weight of water (γ = 62.4 lb/ft³) is equal to the product of water density and gravitational acceleration, ρ g. A general evaluation of power for a particular reach can be calculated using bankfull discharge and water surface slope for the reach. As slopes become steeper and/or velocities increase, stream power increases and more energy is available for re-working channel materials. Straightening and clearing channels increases slope and velocity and thus stream power. Alterations to the stream channel may conversely decrease stream power. In particular, overwidening of a channel will dissipate energy of flow over a larger area. This process will

decrease stream power, allowing sediment to fall out of the water column, possibly leading to aggradation of the streambed.

The relationship between a channel and its floodplain is also important in determining stream power. Streams that remain within their banks at high flows tend to have higher stream power and relatively coarser bed materials. In comparison, streams that flood over their banks onto adjacent floodplains have lower stream power, transport finer sediments, and are more stable. Stream power assessments can be useful in evaluating sediment discharge within a stream and the deposition or erosion of sediments from the streambed.

5.2.2 Shear Stress

Shear stress, expressed as force per unit area, is a measure of the frictional force that flowing water exerts on a streambed. Shear stress and sediment entrainment are affected by sediment supply (size and amount), energy distribution within the channel, and frictional resistance of the streambed and bank on water within the channel. These variables ultimately determine the ability of a stream to efficiently transport bedload and suspended sediment.

For flow that is steady and uniform, the average boundary shear stress exerted by water on the bed is defined as follows:

$$\tau = \gamma Rs$$

where τ = shear stress (lb/ft²), γ = specific weight of water, R = hydraulic radius (ft), and s = the energy slope (ft/ft). Shear stress calculated in this way is a spatial average and does not necessarily provide a good estimate of bed shear at any particular point. Adjustments to account for local variability and instantaneous values higher than the mean value can be applied based on channel form and irregularity. For a straight channel, the maximum shear stress can be assumed from the following equation:

$$\tau_{max} = 1.5\tau$$

for sinuous channels, the maximum shear stress can be determined as a function of plan form characteristics:

$$\tau_{\rm max} = 2.65 \tau (R_{\rm c}/W_{\rm bkf})^{-0.5}$$

where R_c = radius of curvature (ft) and W_{bkf} = bankfull width (ft).

Shear stress represents a difficult variable to predict due to variability of channel slope, dimension, and pattern. Typically, as valley slope decreases channel depth and sinuosity increase to maintain adequate shear stress values for bedload transport. Channels that have higher shear stress values than required for bedload transport will scour bed and bank materials, resulting in channel degradation. Channels with lower shear stress values than needed for bedload transport will deposit sediment, resulting in channel aggradation.

The actual amount of work accomplished by a stream per unit of bed area depends on the available power divided by the resistance offered by the channel sediments, plan form, and vegetation. The stream power equation can thus be written as follows:

$$\omega = \rho g Q s = \tau v$$

where ω = stream power per unit of bed area (N/ft-sec, Joules/sec/ft²), τ = shear stress, and v = average velocity (ft/sec). Similarly,

$$\omega = \Omega / W_{bkf}$$

where W_{bkf} = width of stream at bankfull (ft).

5.2.3 Stream Power and Shear Stress Methods and Results

Channel degradation or aggradation occurs when hydraulic forces exceed, or do not approach, the resisting forces in the channel. The amount of degradation or aggradation is a function of relative magnitude of these forces over time. The interaction of flow within the boundary of open channels is only imperfectly understood. Adequate analytical expressions describing this interaction have yet to be developed for conditions in natural channels. Thus, means of characterizing these processes rely heavily upon empirical formulas.

Traditional approaches for characterizing stability can be placed in one of two categories: 1) maximum permissible velocity and 2) tractive force, or stream power and shear stress. The former is advantageous in that velocity can be measured directly. Shear stress and stream power cannot be measured directly and must be computed from various flow parameters. However, stream power and shear stress are generally better measures of fluid force on the channel boundary than velocity.

Using these equations, stream power and shear stress were estimated for

- 1) Camp Branch Reach 1 and 2: Upstream of Headcut to Ford,
- 2) Camp Branch Reach 3: Downstream of Ford,
- 3) Dula Thoroughfare: Upstream Reach,
- 4) Dula Thoroughfare: Downstream Reach,
- 5) Camp Branch, Reference Reach,
- 6) UT to Reedy Creek (reference area),
- 7) UT to Crane Creek (reference area), and
- 8) Proposed on-Site conditions.

Important input values and output results (including stream power, shear stress, and per unit shear power and shear stress) are presented in Table 5. Average stream velocity and discharge values were calculated for existing on-Site stream reaches, reference reaches, and proposed conditions.

Stream Reach	Discharge (Q) (ft³/sec)	Water surface Slope (s) (ft/ft)	Total Stream Power (Ω) =γQs	Ω/W	Hydraulic Radius (R) = A/WP	Shear Stress (τ) = γ Rs (lb/ft ²)	Velocity (v) (ft/sec)	τV
Camp Branch		_	-		-		-	
Reach 1 and 2 (E-type) Upstream to								
Ford	168	0.0029	30.40	1.66	1.72	0.31	4.34	1.35
Reach 3 (G-type) Downstream of								
Ford	182	0.0041	46.56	2.62	1.86	0.48	4.33	2.06
Dula Thoroughfare								
Upstream Reach	19.3	0.0228	27.46	4.58	0.65	0.93	3.78	3.52
Downstream Aggrading Reach	30	0.0019	3.56	0.25	0.47	0.06	4.29	0.24
Reference								
Camp Branch	168	0.0029	30.40	1.55	1.64	0.30	4.34	1.29
UT to Reedy Creek	44	0.0111	30.48	2.93	1.17	0.81	2.84	2.31
UT to Crane Creek	119	0.0014	10.40	1.03	1.45	0.13	5.80	0.74
Proposed Camp Branch								
Camp Branch upstream	168	0.0031	32.50	1.51	1.51	0.29	4.44	1.29
Camp Branch Middle Reach	182	0.0031	35.21	1.57	1.60	0.31	4.33	1.34
Proposed Dula (non-braided reach)								
Proposed Dula	23	0.007	10.05	1.17	0.62	0.27	3.71	1.60

Table 5. Stream Power (Ω) and Shear Stress (τ) Values

As would be expected, stream power and shear stress are lowest in the aggrading reaches (Dula Thoroughfare) and low slope reference reaches. Conversely, stream power and shear stress are highest in the on-Site reaches which are currently showing signs of degradation (Camp Branch Reach 3). Stream power is the highest for the dredged and straightened, G-type reach, where slopes have been steepened, cross-sectional area is high, width-to-depth ratio is low, bank erosion is high, and the channel is highly incised.

In order to maintain sediment transport functions of a stable stream system, the non-braided reaches of proposed channels should exhibit stream power and shear stress values that neither aggrade nor degrade. Results of the analysis indicate that the non-braided proposed channel reaches are expected to maintain stream power values of approximately 10 to 35 and shear stress values of approximately 0.27 to 0.31 (similar to that of reference reaches and considerably less than that of the existing degrading reaches). Therefore, the design channel is expected to effectively transport sediment through the Site, resulting in stable channel characteristics.

6.0 **RESTORATION PLAN**

The primary goals of this restoration plan include 1) construction of stable, riffle-pool stream complexes; 2) construction of a backwater slough, braided stream complex, 3) creation of a natural vegetation buffer along enhanced and restored stream channels; 4) maximize the re-establishment of historic wetland function; 5) restoration of wildlife functions associated with a riparian corridor, and 6) protection of the Site in perpetuity.

The complete restoration plan is depicted in Figure 9. The proposed restoration plan is expected to provide the following:

- 1. 5,663 linear feet of stream restoration
- 2. 1,190 linear feet of stream enhancement level 1 (restoration of dimension and profile)
- 3. 7,306 linear feet of stream enhancement level 2 (remove from agriculture, remove spoil from the banks, and re-vegetate)
- 4. 11,250 linear feet of stream preservation
- 5. 10.2 acres of wetland preservation
- 6. 5.6 acres of wetland restoration
- 7. 0.9 acres of wetland enhancement

Components of this plan may be modified based on construction or access constraints.

Primary activities proposed at the Site include 1) stream enhancement/restoration, 2) wetland enhancement/restoration, 3) soil scarification, and 4) plant community restoration. A monitoring plan is outlined in Section 7 of this document.

6.1 Stream Enhancement/Restoration

This stream enhancement/restoration effort is designed to reconstruct stable, meandering streams that approximate hydrodynamics, stream geometry, and local microtopography relative to reference conditions. This effort consists of 1) stream reconstruction on new location, 2) stream reconstruction in place, and 3) ford construction. Geometric attributes for the proposed, stable channels are listed in Table 6A and 6B (Appendix B).

6.1.1 Reconstruction on New Location

Reaches proposed for reconstruction on new location are depicted on Figure 9A to 9C. Primary activities designed to reconstruct the channel on new location include 1) belt-width preparation and grading, 2) floodplain bench excavation, 3) channel excavation, 4) installation of channel plugs, and 5) backfilling of the abandoned channel.

Belt-width Preparation and Grading

Care will be taken to avoid the removal of existing, deeply rooted vegetation within the beltwidth corridor which may provide design channel stability. Material excavated during grading will be stockpiled immediately adjacent to channel segments to be abandoned and backfilled. These segments will be backfilled after stream diversion is completed. Spoil material may be placed to stabilize temporary access roads and to minimize compaction of the underlying floodplain. However, all spoil will be removed from floodplain surfaces upon completion of construction activities.

Floodplain Bench Excavation

The creation of a bankfull, floodplain bench is expected to 1) remove the eroding material and collapsing banks, 2) promote overbank flooding during bankfull flood events, 3) reduce the erosive potential of flood waters, and 4) increase the width of the active floodplain. Bankfull benches may be created by excavating the adjacent floodplain to bankfull elevations or filling eroded/abandoned channel areas with suitable material. After excavation, or filling of the bench, a relatively level floodplain surface is expected to be stabilized with suitable erosion control measures. Planting of the bench with native floodplain vegetation is expected to reduce erosion of bench sediments, reduce flow velocities in flood waters, filter pollutants, and provide wildlife habitat.

After excavation of the floodplain bench, the design channel and updated profile survey will be developed and the location of each meander wavelength plotted and staked along the profile. Pool locations and relative frequency configurations may be modified in the field based on local variations in the floodplain profile.

Channel Excavation

The channel will be constructed within the range of values depicted in Table 6A and 6B (Appendix B). The channel will be excavated to the approximate dimensions depicted on Figure 10. The channel should be excavated to the proposed channel depth and width. Material excavated from the proposed design channel will be stockpiled adjacent to the reach of channel to be backfilled or will be wasted on upland portions of the Bishop property, as directed by the field engineer.

Stream banks and local belt-width area of constructed channels will be immediately planted with shrub and herbaceous vegetation. Particular attention will be directed toward providing vegetative cover and root growth along the outer bends of each stream meander. Live willow stake revetments will be constructed as conceptually depicted in Figure 11. Available root mats or biodegradable, erosion-control matting may be embedded into the break-in-slope to promote more rapid development of an overhanging bank. Willow stakes will be purchased and/or collected on-Site and inserted through the root/erosion mat into the underlying soil.

Channel Plugs

Impermeable plugs will be installed along abandoned channel segments at locations depicted on Figure 9A to 9C. The plugs will consist of low-permeability materials or hardened structures designed to be of sufficient strength to withstand the erosive energy of surface flow events across the Site. Dense clays may be imported from off-site or existing material, compacted within the channel, may be suitable for plug construction. The plug will be sufficiently wide and deep to form an imbedded overlap in the existing banks and channel bed.

Channel Backfilling

After impermeable plugs are installed, the abandoned channel will be back-filled. Backfilling will be performed primarily by pushing stockpiled materials into the channel. The channel will be filled to the extent that on-Site material is available and compacted to maximize microtopographic variability, including ruts, ephemeral pools, and hummocks in the vicinity of the backfilled channel.

In-Stream Structures

Stream restoration under natural stream design techniques normally involves the use of instream structures for bank stabilization, grade control, and habitat improvement. Primary activities designed to achieve these objectives may include the installation of cross-vane weirs, J-hook vanes, and log vanes.

Cross-vane Weirs

The purpose of the vane is to 1) sustain bank stability, 2) direct high velocity flows during bankfull events toward the center of the channel, 3) maintain average pool depth throughout the reach, 4) preserve water surface elevations and reconnect the adjacent floodplain to flooding dynamics from the stream, and 5) modify energy distributions through increases in channel roughness and local energy slopes during peak flows.

Cross-vane weirs will be constructed as conceptually depicted in Figure 12. Cross-vane weir construction will be initiated by imbedding footer rocks into the stream bed for stability and to prevent undercutting of the structure. Header rocks will then be placed atop the footer rocks at the design elevation. Footer and header rocks create an arm that slopes from the center of the channel upward at approximately 7 to 10 degrees, tying in at the bankfull floodplain elevation. The cross-vane arms at both banks will be tied into the bank with a sill to eliminate the possibility of water diverting around the structure. Once the header and footer stones are in place, filter fabric will be buried into a trench excavated around the upstream side of the vane arms. The filter fabric is then draped over the header rocks to force water over the vane. The upstream side of the structure can then be backfilled with suitable material to the elevation of the header stones.

J-hook/log vanes

The primary purpose of the J-hook and log vanes is to direct high-velocity flows during bankfull events toward the center of the channel. J-hook vanes will be constructed using the same type and size of rock employed in the construction of cross-vane weirs (Figure 13). Log vanes will be constructed utilizing large tree trunks harvested from the Site or imported from off-site. The tree stem harvested for a log-vane arm must be long enough to be imbedded into the stream channel and extend several feet into the floodplain (Figure 14). A trench will be dug into the stream channel that is deep enough for the head of the log to be at or below the channel invert. The trench is then extended into the floodplain and the log is set into the trench such that the log arm is below the floodplain elevation. If the log is not of sufficient size to completely block stream flow (gaps occur between the log and channel bed) then a footer log or stone footers will be installed beneath the header log. Boulders will then be situated at the base of the log and at the head of the log to hold the log in place.

Similar to a cross vane, the arm of the J-hook vane and the log vane (which forms an arm) must slope from the center of the channel upward at approximately 7 to 10 degrees, tying in at the bankfull floodplain elevation. Once these vanes are in place, filter fabric is toed into a trench on the upstream side of the vane and draped over the structure to force water over the vane. The upstream side of the structure is then backfilled with suitable material.

6.1.2 Stream Reconstruction In-Place

Stream reconstruction in-place is expected in 1) areas where channel pattern has not been altered; however, the channel has incised due bed or bank erosion, or 2) areas where backwater slough conditions will persist once restoration has been completed. Reaches proposed for reconstruction in-place are depicted in Figure 9A to 9C. Primary activities designed to achieve these objectives may include 1) installation of in-stream structures, 2) creation of a floodplain bench, 3) excavation of a backwater slough/braided channel system, 4) spoil removal, 5) backfilling abandoned channels, and 6) diversion of bankfull flows to historic channels.

Installation of in-stream structures and creation of a floodplain bench has been described in detail in Section 6.1.1 (Stream Reconstruction on New Location) of this document. The design, installation, and function of in-stream structures and floodplain bench are similar for stream reconstruction in-place.

Excavation of a Backwater Slough/Braided Channel System

Backwater slough/braided channel systems will be designed to mimic reference wetland and stream conditions found within the Rocky River floodplain. Conditions include 1) convoluted interception of groundwater and flood flows, 2) average slope of upland-wetland interface and slough surface, 3) micro-topographic variation along the slough surface, and 4) soil modification and debris deposition.

Backwater slough/braided channel construction will occur within, and adjacent to, the existing Dula Thoroughfare aggrading ditch/channel (Figure 9B). Construction of the backwater slough/braided channel system will initiate at the confluence of Dula Thoroughfare and the Rocky River floodplain. The system will extend approximately 1195 feet downstream as a series of shallow, irregularly shaped depressions interspersed between shallow, braided stream channels. The depressions will range to a maximum of 1-foot below the proposed surface elevation in the center of the depression. The isolated depressions are expected to fill with organic matter and sediment, with development of braided channel occurring passively over time.

Spoil Removal

Spoil material deposited adjacent to the downstream reaches of Dula Thoroughfare and the UT to Dula Thoroughfare will be removed from channel banks and deposited in abandoned channels or wasted in upland portions of the Site/adjacent agricultural fields. Spoil removal areas are depicted in Figure 9B and 9C. Removal of spoil material is expected to facilitate overbank flooding, thereby extending floodprone areas and reducing scour potential of local flood flows.

Backfilling Abandoned Channels

Several reaches of the UT to Dula Thoroughfare are characterized by shoot cutoffs; secondary channels that have been blocked from normal flows by spoil castings; and excavated channels adjacent to an historic, abandoned channel. Backfilling of these abandoned channels with spoil material or material excavated from the floodplain will redirect stream flow through the historic, abandoned reaches of channel.

Diversion of Bankfull Flows

Bankfull discharge currently appears to be re-directed through a ditch connecting the downstream reach of Dula Thoroughfare to the Rocky River. This ditch effectively splits stormwater discharge from Dula Thoroughfare during bankfull flood events. Conversely, the ditch transmits water to Dula Thoroughfare during high volume flood flows from the Rocky River. Filling this ditch, and redirecting bankfull discharge through Dula Thoroughfare will allow for "channel forming" flows to continue natural evolutionary channel processes within on-Site and downstream reaches of Dula Thoroughfare.

6.1.3 Ford Construction

Landowner constraints will necessitate the installation of three channel fords to allow access to portions of the property isolated by the conservation easement and/or stream and wetland restoration activities. Proposed channel ford locations are depicted on Figure 9. The fords are expected to consist of shallow depressions in stream banks where vehicular crossings can be made (Figure 15). The fords will be constructed of hydraulically stable rip-rap or suitable rock and will be large enough to handle the weight of anticipated vehicular traffic. Approach grades to the ford will be at a minimum 15:1 slope and constructed of hard, scour-resistant crushed rock or other permeable material, which is free of fines. The bed elevation of the ford will equal the stream bed elevation above and below the ford to reduce the risk of headcutting.

6.2 Wetland Enhancement/Restoration

Site alterations to wetland areas and/or areas underlain by hydric soils are designed to reestablish a fully functioning wetland system which will provide surface water storage, nutrient cycling, removal of imported elements and compounds, and will create a variety and abundance of wildlife habitat. Wetland enhancement/restoration activities are expected to restore approximately 5.6 acres of jurisdictional wetland and enhance approximately 0.9 acre of jurisdictional wetland (Figure 9). The proposed conservation easement also encompasses approximately 10.2 acres of existing, relatively undisturbed jurisdictional wetland which will be preserved in-perpetuity.

Portions of the Site underlain by hydric soil have been impacted by vegetative clearing, earth movement associated with the dredging and straightening of Dula Thoroughfare and compaction by placement of spoil on the floodplain. Wetland enhancement/restoration options will focus on 1) the establishment of backwater slough/braided channel systems, 2) excavation and grading of elevated spoil and sediment embankments, and 3) reestablishing hydrophytic vegetation.

Establishment of Backwater Slough / Braided Channel Systems

The existing dredged and straightened reach of Dula Thoroughfare represents the primary on-Site wetland restoration feature. Currently, Dula Thoroughfare drains from the valley wall slopes as a channelized, E-type stream. Upon entering the Rocky River Floodplain, the channel has been dredged and straightened and is currently characterized as a shallow, wide, slackwater ditch that has been isolated from the adjacent floodplain. Measures outlined in Section 6.2.1 (Stream Reconstruction In-Place - Excavation of a Backwater Sough/Braided Channel System), including excavation of a floodplain and shallow non-linear depressions connected by braided channel systems is expected to result in approximately 5.6 acres of jurisdictional wetland restoration within the Rocky River floodplain.

It should be noted that floodplains adjacent to the dredged and straightened reach of Dula Thoroughfare are underlain by brightly colored soils (approximately 10YR 4/4 to 10YR 4/6), which are characteristic of wetlands in the area. USACE representatives conducted a field visit to the Site on January 13, 2004 (Notification of Jurisdictional Determination can be found in Appendix F), and confirmed these brightly colored soils were indicative of a hydric soil for the region.

Excavation and Grading of Elevated Spoil and Sediment Embankments

Reaches of Dula Thoroughfare and its UT have experienced both natural and unnatural sediment deposition. Spoil piles appear to have been cast adjacent to the channels during dredging and straightening of the stream or during agricultural field clearing. Major flood events may have also deposited additional sediment adjacent to stream banks from eroding banks and upstream agricultural fields. The removal of spoil material and/or filling of on-Site ditches with spoil material represent a critical element of wetland restoration.

Hydrophytic Vegetation

On-Site wetland areas have endured significant disturbance from land use activities such as land clearing, row crop agriculture, and other anthropogenic maintenance. Wetland areas will be re-vegetated with native vegetation typical of wetland communities in the region. Emphasis will focus on developing a diverse plant assemblage. Sections 6.4 (Plant Community Restoration) and 6.4.2 (Planting Plan) provide detailed information concerning community species associations. Re-vegetation of portions of the Site underlain by hydric soils is expected to represent an important wetland enhancement/restoration component.

6.3 Floodplain Soil Scarification

Microtopography and differential drainage rates within localized floodplain areas represent important components of floodplain functions. Reference forests in the region exhibit complex surface microtopography. Small concavities, swales, exposed root systems, seasonal pools, oxbows, and hummocks associated with vegetative growth and hydrological patterns are scattered throughout these systems. As discussed in the stream reconstruction section, efforts to advance the development of characteristic surface microtopography will be implemented.

In areas where soil surfaces have been compacted, ripping or scarification will be performed. After construction, the soil surface is expected to exhibit complex microtopography ranging to 1 foot vertical asymmetry across local reaches of the landscape. Subsequently, community restoration will be initiated on complex floodplain surfaces.

6.4 Plant Community Restoration

Restoration of floodplain forest and stream-side habitat allows for development and expansion of characteristic species across the landscape, in addition to reducing the presence of invasive species. Ecotonal changes between community types contribute to diversity and provide secondary benefits, such as enhanced feeding and nesting opportunities for mammals, birds, amphibians, and other wildlife.

RFE data, on-Site observations, and community descriptions from Classification of the Natural Communities of North Carolina (Schafale and Weakley 1990) were used to develop the primary plant community associations that will be promoted during community restoration activities. These community associations include 1) stream-side assemblage, 2) bottomland hardwood forest, and 3) slope forest (Figure 16). Figure 17 identifies the location, based on elevation and position relative to restored streams and wetlands, of each target community to be planted. Planting elements within each map unit are listed below.

Bottomland Hardwood Forest

- 1. Swamp chestnut oak (Quercus michauxii)
- 2. American elm (Ulmus americana)
- 3. Sugarberry (*Celtis laevigata*)
- 4. Green ash (*Fraxinus pennsylvanica*)
- 5. Shagbark hickory (*Carya ovata*)
- 6. Willow oak (*Quercus phellos*)
- 7. Northern red oak (*Quercus rubra*)
- 8. Southern red oak (Quercus falcata)
- 9. Black gum (*Nyssa sylvatica*)
- 10. American sycamore (*Platanus occidentalis*)

Stream-Side Assemblage

- 1. Black willow (Salix nigra)
- 2. Elderberry (Sambucus canadensis)
- 3. River birch (*Betula nigra*)
- 4. American sycamore (*Platanus occidentalis*)
- 5. Swamp dogwood (*Cornus stricta*)
- 6. Tag alder (*Alnus serrulata*)
- 7. Buttonbush (*Cephalanthus occidentalis*)
- 8. Arrow-wood viburnum (*Viburnum dentatum*)
- 9. Possumhaw viburnum (*Viburnum nudum*)
- 10. Highbush blueberry (*Vaccinium corymbosum*)

Slope Forest

- 1. Mockernut hickory (*Carya tomentosa*)
- 2. Pignut hickory (*Carya glabra*)
- 3. White oak (*Quercus alba*)
- 4. Sourwood (*Oxydendrum arboreum*)
- 5. American holly (*llex opaca*)

6. Flowering dogwood (*Cornus florida*)

Stream-side trees and shrubs include species with high value for sediment stabilization, rapid growth rate, and the ability to withstand hydraulic forces associated with bankfull flow and overbank flood events. Stream-side trees and shrubs will be planted within 15 feet of the channel throughout the meander belt-width. Shrub elements will be planted along the banks of the reconstructed stream, concentrated along outer bends.

Bottomland hardwood forest vegetation is targeted for areas located in the floodplain and backwater slough/braided channel system. Species common along slope forests will be planted on slopes adjacent to the floodplain.

The following planting plan is the blueprint for community restoration. The anticipated results stated in the Success Criteria (Section 7.8) are expected to reflect potential vegetative conditions achieved after steady-state conditions prevail over time.

6.5 Planting Plan

The purpose of a planting plan is to re-establish vegetative community patterns across the landscape. The plan consists of 1) acquisition of available plant species, 2) implementation of proposed Site preparation, and 3) planting of selected species.

Species selected for planting will be dependent upon availability of local seedling sources. Advance notification to nurseries (1 year) will facilitate availability of various non-commercial elements.

Bare-root seedlings of tree species will be planted within specified map areas at a density of approximately 680 stems per acre on 8-foot centers. Shrub species in the streamside assemblage will be planted at a density of 1360 stems per acre on 4-foot centers. Table 7 depicts the total number of stems and species distribution within each vegetation association. Planting will be performed between December 1 and March 15 to allow plants to stabilize during the dormant period and set root during the spring season. A total of 63,454 diagnostic tree and shrub seedlings may be planted during restoration.

Table 7: Planting Plan

Vegetation Association	Bottomland Hardwood Forest		Stream-side Assemblage		Slope Forest		Backwater Slough		Total
Area (acres)	51.7		4.1		27.2		6.2		
Species	number planted	% of total	number planted	% of total	number planted	% of total	number planted	% of total	Number Planted
Swamp Chestnut Oak	3516	10					633	15	4149
American Elm	3516	10							3516
Sugarberry	1758	5							1758
Green Ash	7031	20					633	15	7664
Shagbark Hickory	3516	10							3516
Willow Oak	3516	10							3516
Northern Red Oak	1758	5							1758
Southern Red Oak	1758	5							1758
Black Gum	3516	10							3516
American Sycamore	5274	15	558	10					5832
River Birch			558	10					558
Swamp Dogwood			279	5					279
Black Willow			1115	20					1115
Tag Alder			558	10			633	15	1191
Buttonbush			279	5			422	10	701
Elderberry			558	10					558
Arrow-wood Vibernum			558	10					558
Possumhaw Vibernum			558	10					558
Highbush Blueberry			558	10					558
Mockernut Hickory					3699	20			3699
Pignut Hickory					3699	20			3699
White Oak					3699	20			3699
Sourwood					3699	20			3699
American Holly					1850	10			1850
Flowering Dogwood					1850	10			1850
Overcup Oak							633	15	633
Swamp Cottonwood							633	15	633
Cherrybark Oak							633	15	633
Total	35159	100	5579	100	18496	100	4220	100	63454

7.0 MONITORING PLAN

Monitoring of Site restoration efforts will be performed for the first five growing seasons following site construction. If necessary, monitoring will continue through additional growing seasons. Monitoring is proposed for single-strand stream channels, as well as wetland components of hydrology and vegetation. A general Site monitoring plan is depicted in Figure 18.

Stream measurements are not proposed in the backwater slough/braided channel system due to typical characteristics of a D-type (braided) stream consisting of multiple braided channels. D-type stream systems are not conducive to measurement of pattern, dimension, and profile; therefore, the stream will be visually assessed and photographically documented annually to semi-annually and any potential problem area(s) will be identified. If a problem area is noted during the review, the area will be evaluated to determine the corrective action required to resolve the problem.

7.1 Stream Monitoring

Site stream reaches proposed to be monitored for geometric activity are conceptually depicted in Figure 18. Each stream reach will extend for a minimum of 450 feet along the restored channel. Annual fall monitoring will include development of channel cross-sections on riffles and pools, pebble counts, and a water surface profile of the channel. The data will be presented in graphic and tabular format. Data to be presented will include 1) cross-sectional area, 2) bankfull width, 3) average depth, 4) maximum depth, 5) width-to-depth ratio, 6) meander wavelength, 7) belt-width, 8) water surface slope, 9) sinuosity, and 10) stream substrate composition. The stream will subsequently be classified according to stream geometry and substrate (Rosgen 1996). Significant changes in channel morphology will be tracked and reported by comparing data in each successive monitoring year.

7.2 Stream Success Criteria

Success criteria for stream restoration will include 1) successful classification of the reach as a functioning stream system (Rosgen 1996) and 2) channel variables indicative of a stable stream system. Stream restoration success criteria will follow the constructs outlined by interagency guidance (*Stream Mitigation Guidelines* [USACE *et. al.* 2003]).

The channel configuration will be measured on an annual basis in order to track changes in channel geometry, profile, or substrate. These data will be utilized to determine the success in restoring stream channel stability. Specifically, the channel should exhibit the following characteristics:

- 1) Insignificant change in dimension from as-built measurements or the previous years monitoring measurements.
- 2) Minor changes in channel dimension are allowed; however, dimension changes should not represent a trend towards instability (*e.g.* increased width to depth ratio or decreased width to depth ratio with decreased entrenchment ratio).
- 3) Little change in longitudinal profile.
- 4) Pool/riffle spacing should remain fairly constant.
- 5) Pools should not be aggrading and riffles should not scour.

6) Pebble count should trend toward a desired bed material.

The field indicator of bankfull will be described in each monitoring year and indicated on a representative channel cross-section figure. If the stream channel is down-cutting or the channel width is enlarging due to bank erosion, additional bank or slope stabilization methods may be employed.

The stream is expected to maintain shear stress values to adequately transport sediment through the Site. Pebble counts will be conducted annually to determine D50 and D84 values within the restored stream. Pebble counts would be expected to indicate a general coarsening of materials on the riffles throughout the monitoring period.

Visual assessment of in-stream structures will be conducted to determine if failure has occurred. Failure of a structure may be indicated by collapse of the structure, undermining of the structure, abandonment of the channel around the structure, and/or stream flow beneath the structure.

7.3 Hydrology Monitoring

Groundwater monitoring gauges (one gauge within reference and four gauges on-Site) will be installed to monitor groundwater elevations after hydrological modifications are performed. Hydrological sampling will continue throughout the growing season at intervals necessary to satisfy the hydrology success criteria within each design unit (EPA 1990).

7.4 Hydrology Success Criteria

Target hydrological characteristics include saturation or inundation for at least 12.5 percent of the growing season at lower landscape positions, during average climatic conditions. Upper landscape reaches may exhibit surface saturation/inundation between 5 percent and 12.5 percent of the growing season based on groundwater gauge data. These areas are expected to support hydrophytic vegetation. If wetland parameters are marginal as indicated by vegetation and/or hydrology monitoring, a jurisdictional determination will be performed in these areas.

7.5 Vegetation Monitoring

Restoration monitoring procedures for vegetation are designed in accordance with EEP Vegetation Monitoring Requirements (draft 27 August 2004). A general discussion of the restoration monitoring program is provided. A photographic record of plant growth should be included in each annual monitoring report, in addition to the necessary data forms.

After planting has been completed in winter or early spring, an initial evaluation will be performed to verify planting methods and to determine initial species composition and density. Supplemental planting and additional Site modifications will be implemented, if necessary.

During the first year, vegetation will receive cursory, visual evaluation on a periodic basis to ascertain the degree of overtopping of planted elements by nuisance species. Subsequently, quantitative sampling of vegetation will be performed annually, between May and September, until the vegetation success criterion is achieved.

During quantitative vegetation sampling in summer of the first year, approximately seven sample plots will be randomly placed within the Site. Sample-plot distributions are expected to resemble locations depicted in Figure 18; however, best professional judgment may be necessary to establish vegetative monitoring plots upon completion of construction activities. In each sample plot, vegetation parameters to be monitored include species composition and species density. Visual observations of the percent cover of shrub and herbaceous species will also be recorded.

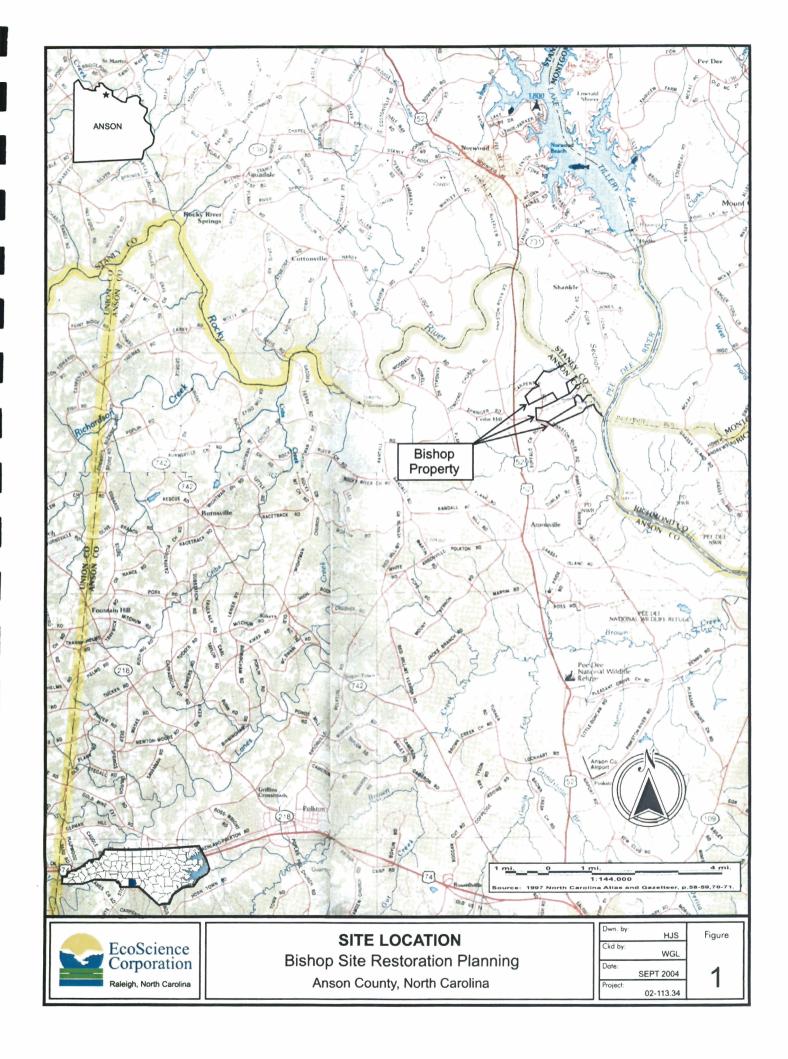
No quantitative sampling requirements are proposed for herb assemblages as part of the vegetation success criteria. Development of floodplain forests over several decades will dictate the success in migration and establishment of desired understory and groundcover populations. Visual estimates of the percent cover of herbaceous species and photographic evidence will be reported for information purposes.

7.8 Vegetation Success Criteria

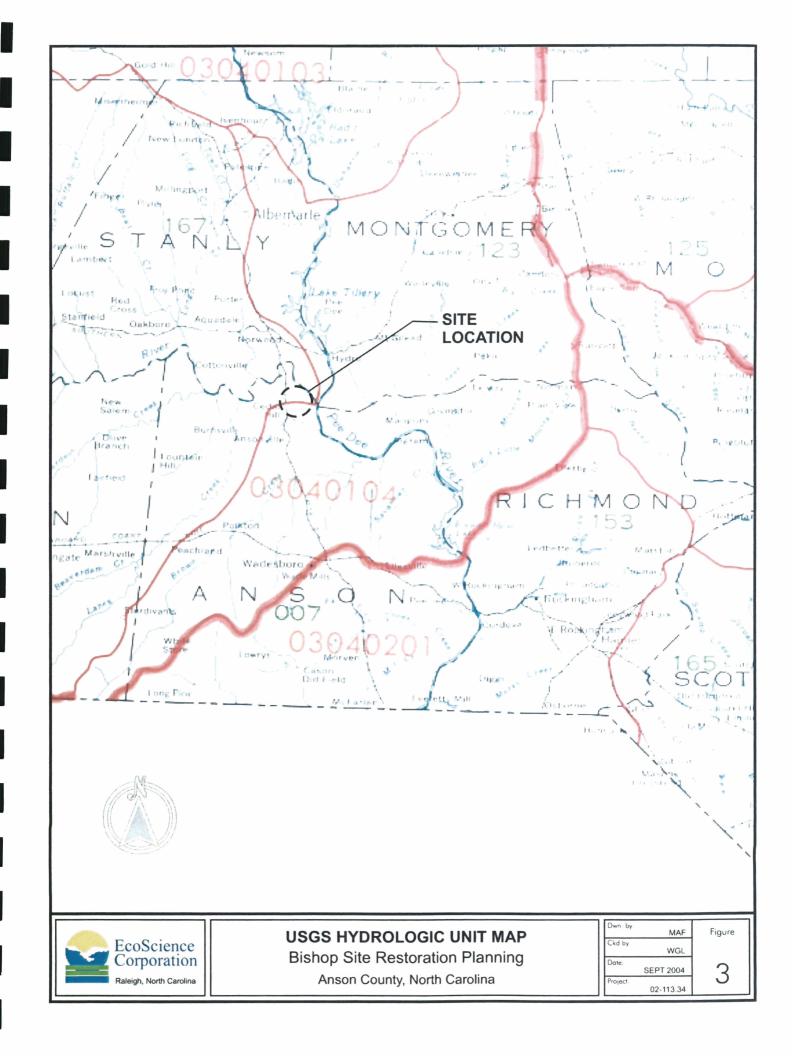
Tables and discussion for each of the following success criteria will be provided with each report. The criteria include cover for each species in each plot, strata presence for each species in each plot and stem counts of each planted species in each plot.

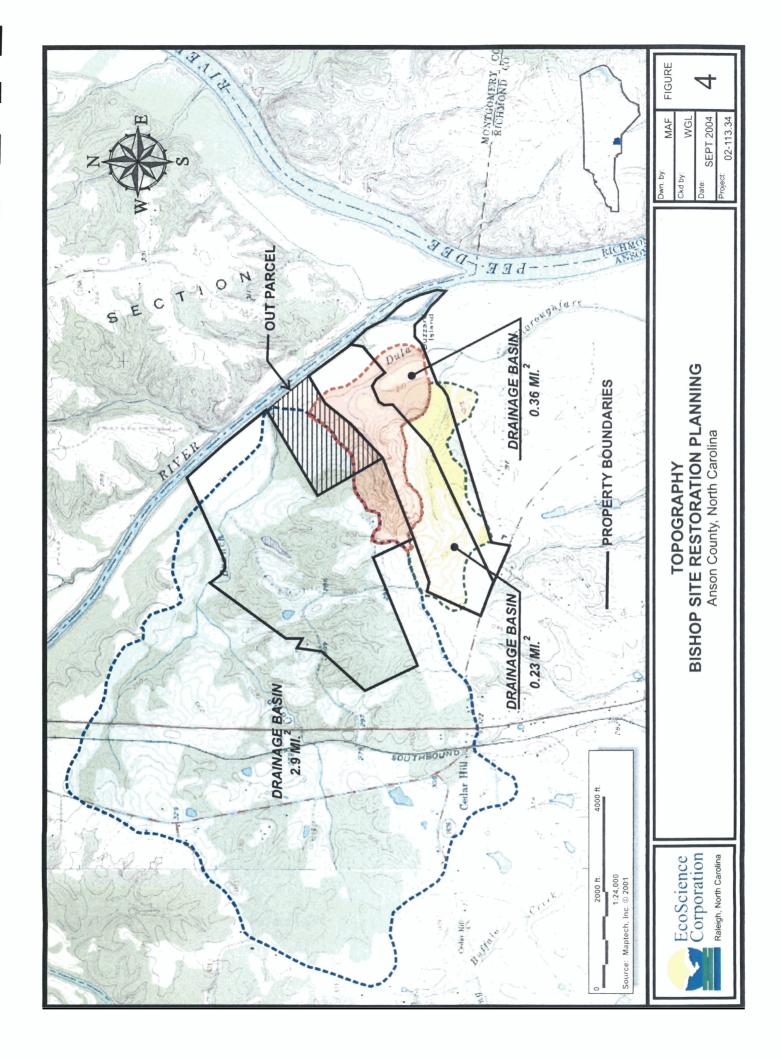
8.0 REFERENCES

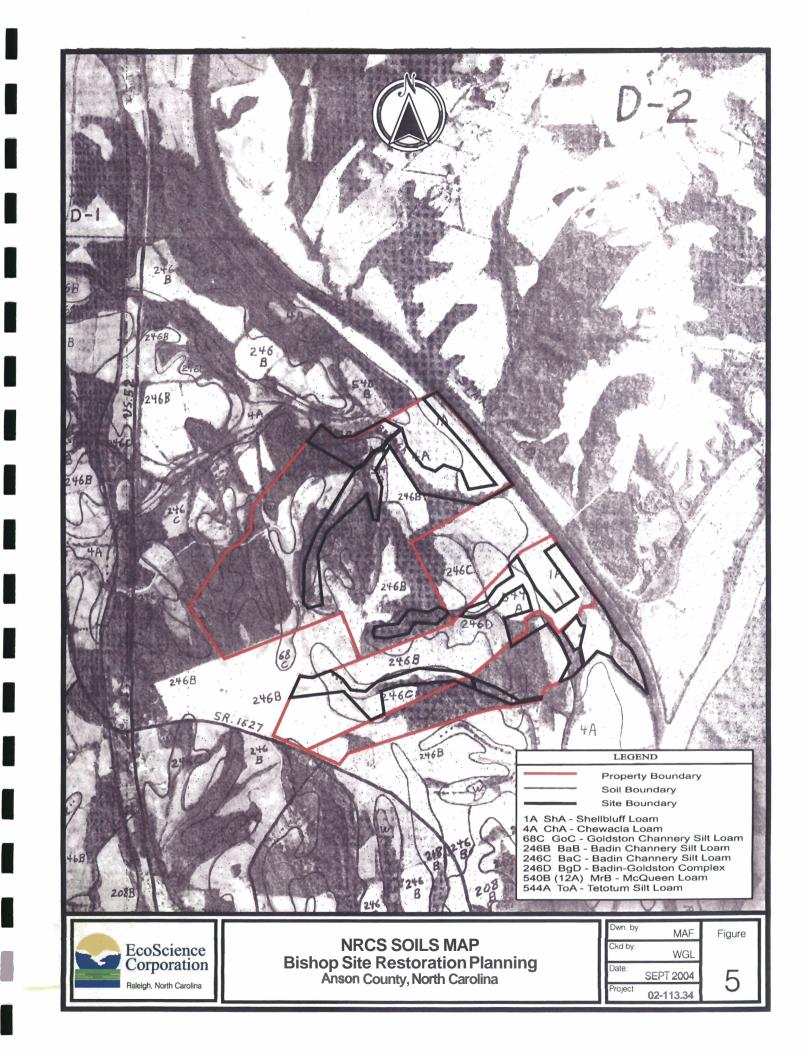
Amoroso, J. L. 2002. Natural Heritage Program List of the Rare Plant Species of North Carolina. North Carolina Natural Heritage Program, Division of Parks and Recreation, Department of Environment, Health, and Natural Resources. Raleigh, North Carolina.

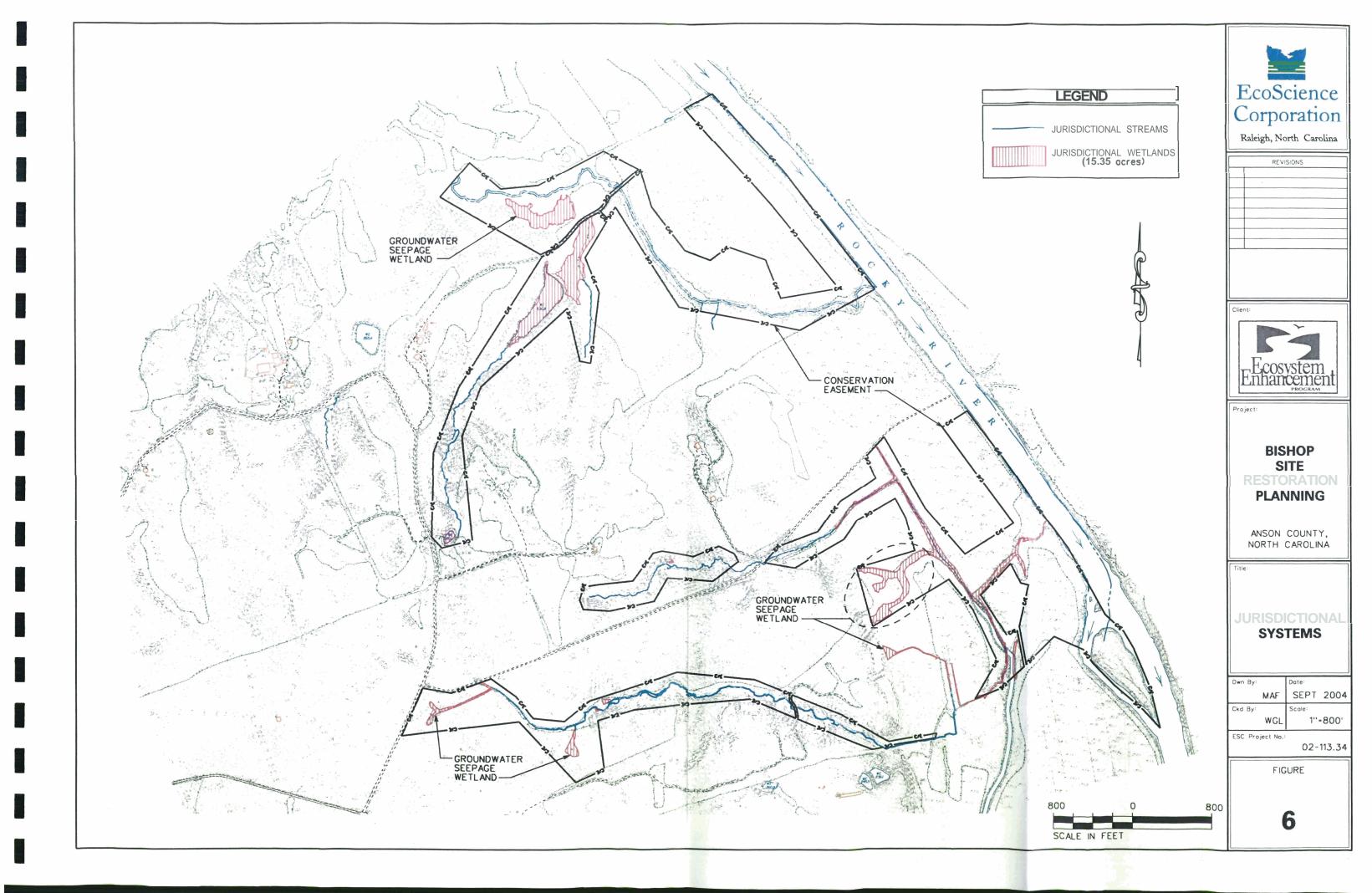

Chang, Howard H. 1988. Fluvial Processes in River Engineering. John Wiley & Sons.

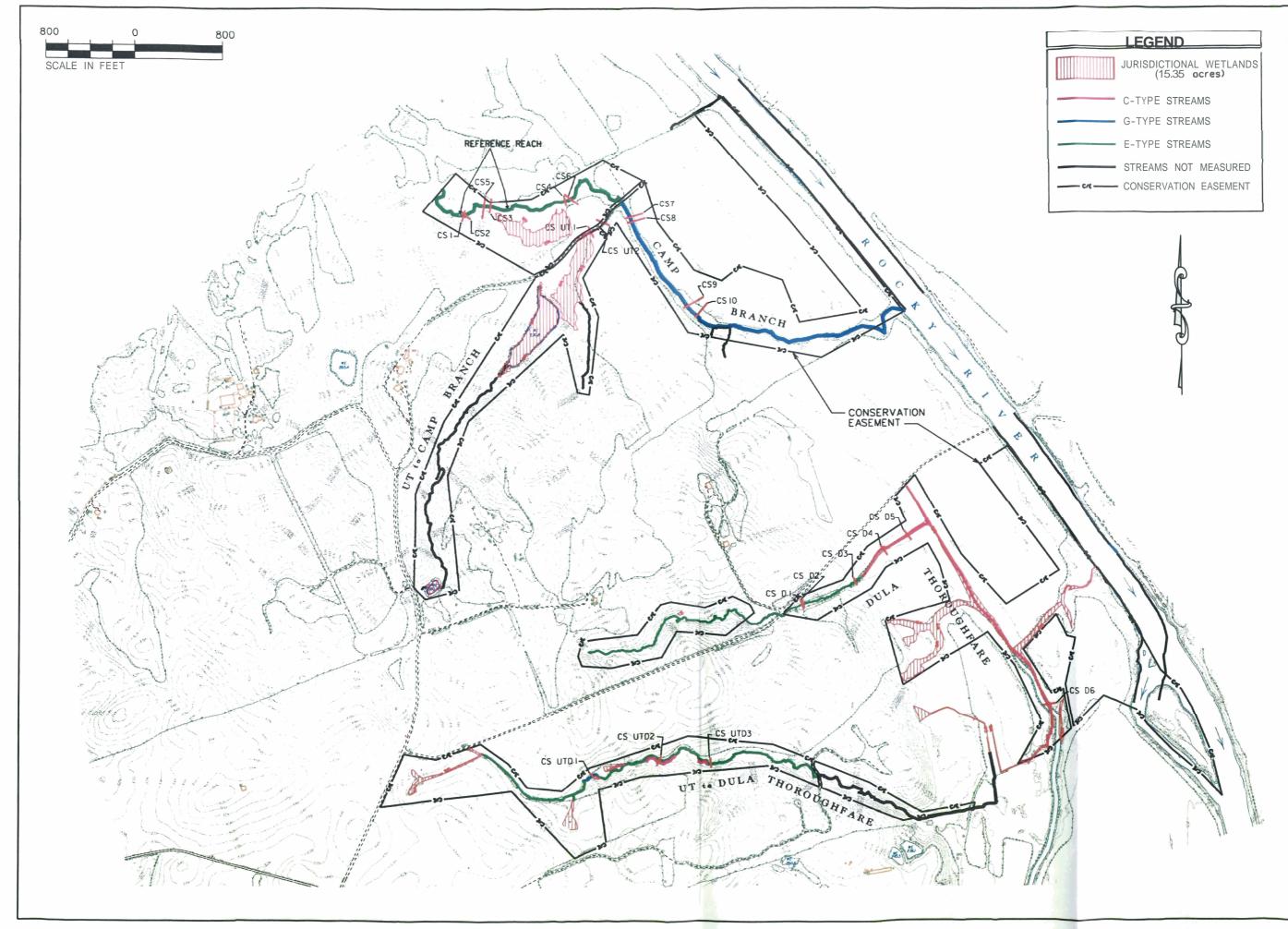
- Clarke, Arthur H. 1985. The tribe Alasmidontini (*Unionidae: Anodontinae*), Part II: <u>Lasmigona</u> and <u>Simpsonaias</u>. Smithsonian Contributions to Zoology, 399:1-75.
- Department of the Army (DOA). 1993 (unpublished). Corps of Engineers Wilmington District. Compensatory Hardwood Mitigation Guidelines (12/8/93).
- Department of the Army (DOA). 1987. Corps of Engineers Wetland Delineation Manual. Tech. Rpt. Y-87-1, Waterways Experiment Station, COE, Vicksburg, Mississippi.
- Dunne, D. and L.B. Leopold. 1978. Water in Environmental Planning. W.H. Freeman and Company. N.Y.
- Environmental Protection Agency (EPA). 1990. Mitigation Site Type Classification (MiST). EPA Workshop, August 13-15, 1989. EPA Region IV and Hardwood Research Cooperative, NCSU, Raleigh, North Carolina.
- Gordon, N.D., T.A. McMahon, and B.L. Finlayson. 1992. Stream Hydrology: an Introduction for Ecologists. John Wiley & Sons, Ltd. West Sussex, England.
- Griffith, G.E. 2002. Ecoregions of North and South Carolina. Reston Virginia. U.S. Geological Society (map scale 1:1,500,000).
- Hamel, P.B. 1992. Land Manager's Guide to the Birds of the South. The Nature Conservancy, Southeastern Region, Chapel Hill, NC. 437 pp.
- Harman, W.A., G.D. Jennings, J.M. Patterson, D.R. Clinton, L.A. O'Hara, A. Jessup, and R. Everhart. 1999. Bankfull Hydraulic Geometry Relationships for North Carolina Streams.
 N.C. State University, Raleigh, North Carolina.
- Harrelson, C.C., C.L. Rawlins, and J.P. Potyondy. 1994. Stream Channel Reference Sites: An Illustrated Guide to Field Technique. Gen. Tech. Rep. RM-245. USDA Forest Service. Rocky Mountain Forest and Range Experiment Station. Fort Collins, Colorado.
- Henry, V.G. 1989. Guidelines for Preparation of Biological Assessments and Evaluations for the Red-cockaded Woodpecker. U.S. Department of the Interior, Fish and Wildlife Service, Southeast Region, Atlanta, GA. 13 pp.

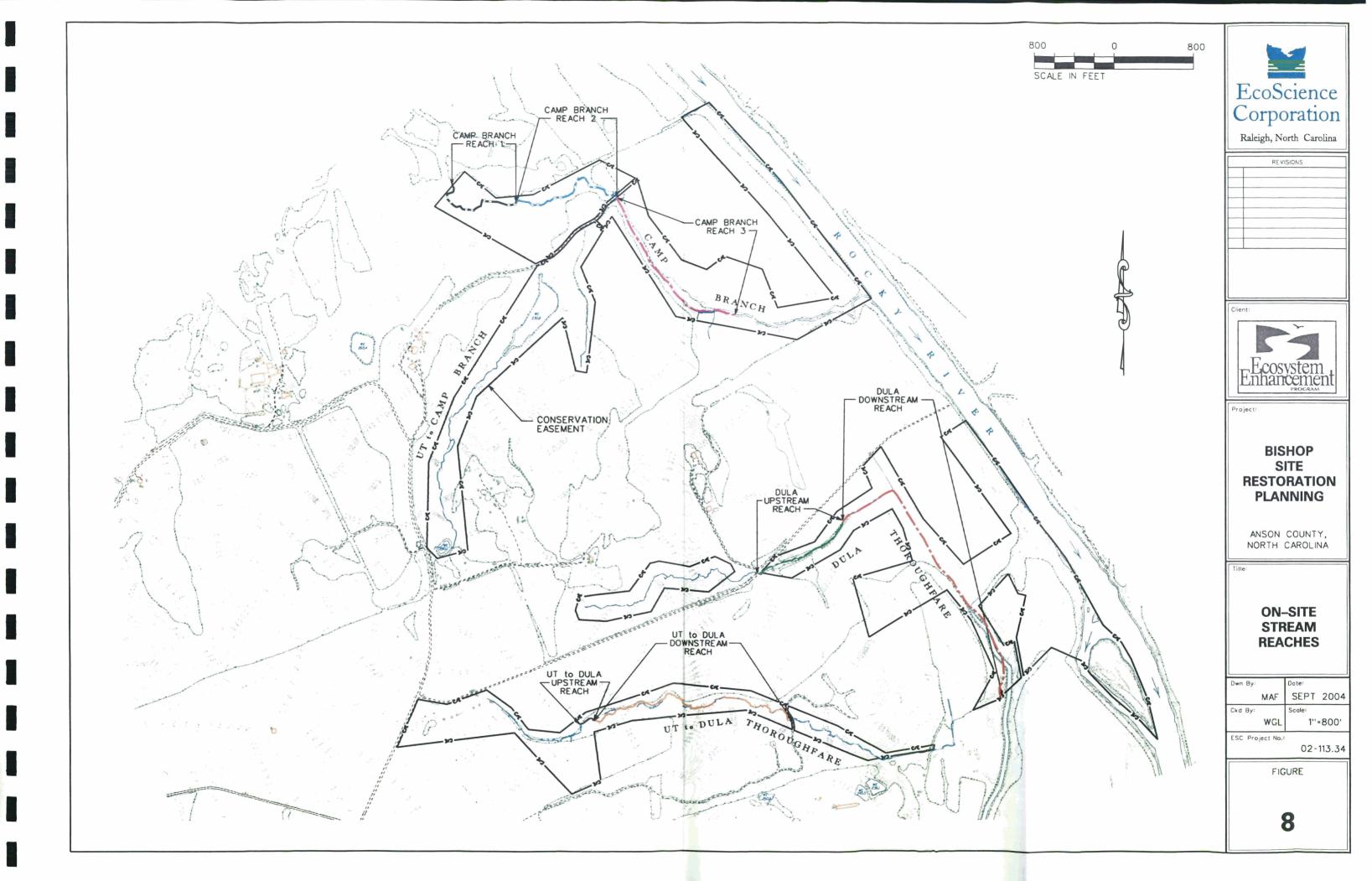

- Keferl Eugene P. and R. M. Shelly. 1988. The Final Report on a Status Survey of the Carolina Heelsplitter, *Lasmigona decorata* and the Carolina Elktoe, *Alasmidonta_robusta*. U.S. Fish and Wildlife Service. 27pp.
- Marble, A.D. 1992. A Guide to Wetland Functional Design. Lewis Publishers, Inc. Ann Arbor, Michigan
- Natural Resources Conservation Service (NRCS). 2000. Soil Survey of Anson County, North Carolina. United States Department of Agriculture.
- North Carolina Department of Environment and Natural Resources. 2004. DRAFT Vegetation Monitoring Requirements. Ecosystem Enhancement Program.
- Potter, E.F., J.F. Parnell, and R.P. Teulings. 1980. Birds of the Carolinas. The University of North Carolina Press, Chapel Hill, NC. 408 pp.
- Rosgen D. 1996. Applied River Morphology. Wildland Hydrology. Pagosa Springs, Colorado.
- Schafale, M.P. and A.S. Weakley. 1990. Classification of the Natural Communities of North Carolina: Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, N.C. Department of Environment, Health, and Natural Resources. Raleigh, North Carolina.
- Smith, R. L. 1980. Ecology and Field Biology, Third Edition. Harper and Row, New York. 835 pp.
- The Scientific Council of Freshwater and Terrestrial Mollusks (TSCFTM). 1990. A Report on the Conservation Status of North Carolina's Freshwater and Terrestrial Molluscan Fauna. 283pp.
- United States Army Corps of Engineers (USACE), United States Environmental Protection Agency (USEPA), North Carolina Wildlife Resources Commission (NCWRC), Natural Resources Conservation Service (NRCS), and North Carolina Division of Water Quality (NCDWQ). 2003. Stream Mitigation Guidelines. State of North Carolina.
- United States Fish and Wildlife Service (USFWS). 2003. Threatened and Endangered Species in North Carolina. Carolina Heelsplitter in North Carolina. http://southeast.fws.gov/es/county%20lists.htm. U.S. Department of Agriculture. (3-20-03).
- United States Fish and Wildlife Service (USFWS), 1996. Carolina Heelsplitter Recovery Plan. U.S. Fish and Wildlife Service, Atlanta, GA. 30 pp.
- United States Fish and Wildlife Service (USFWS). 1994. Schweinitz's Sunflower Recovery Plan. Atlanta, GA. 28 pp.

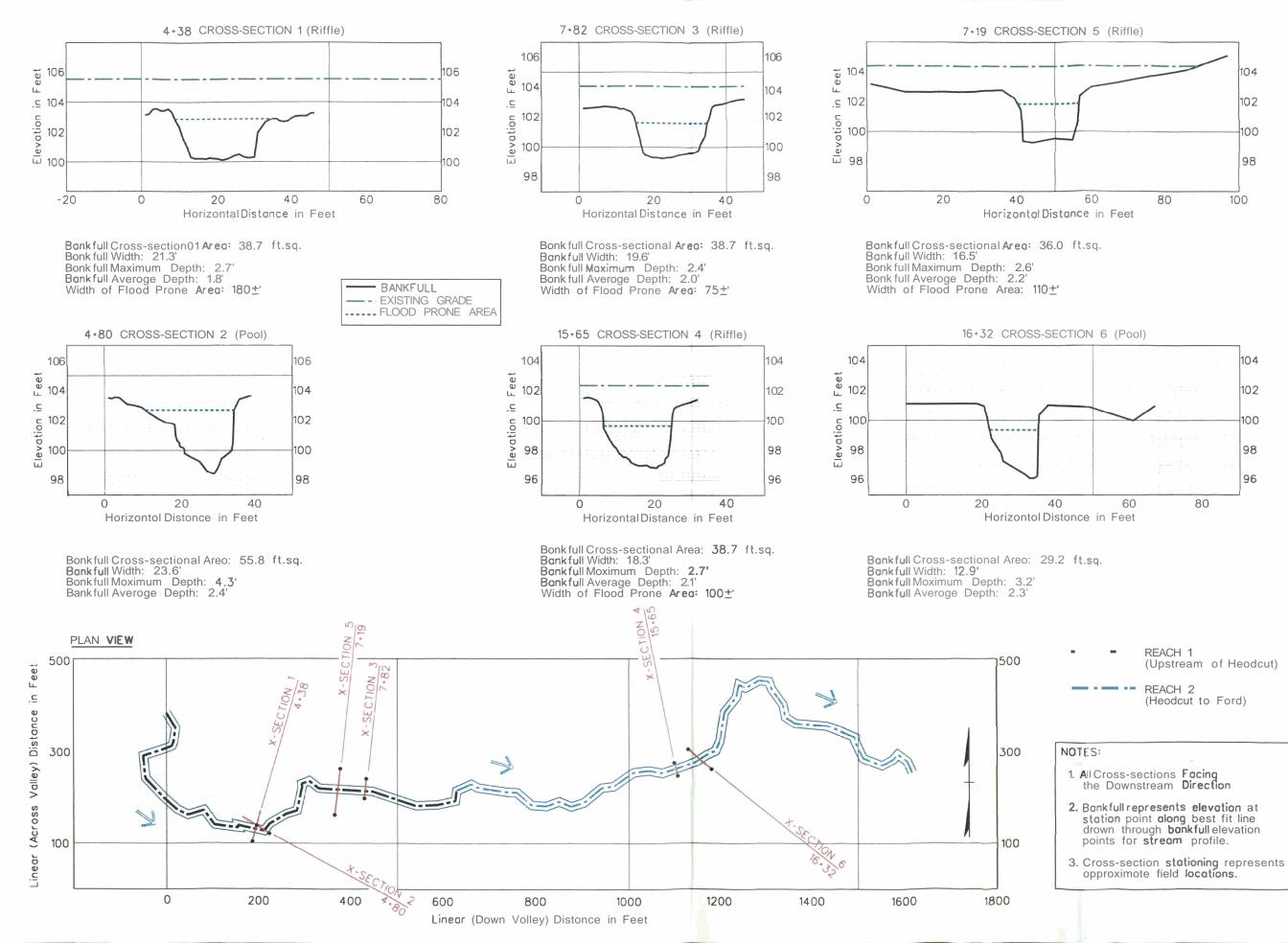

- United States Fish and Wildlife Service (USFWS). 1987. Habitat Management Guidelines for the Bald Eagle in the Southeast Region. U.S. Department of the Interior, Fish and Wildlife Service. 8 pp.
- United States Fish and Wildlife Service (USFWS). 1985. Red-cockaded Woodpecker Recovery Plan. U.S. Department of the Interior, Southeast Region, Atlanta, Georgia. 88 pp.
- United States Geological Survey (USGS). 1974. Hydrologic Unit Map 1974. State of North Carolina.

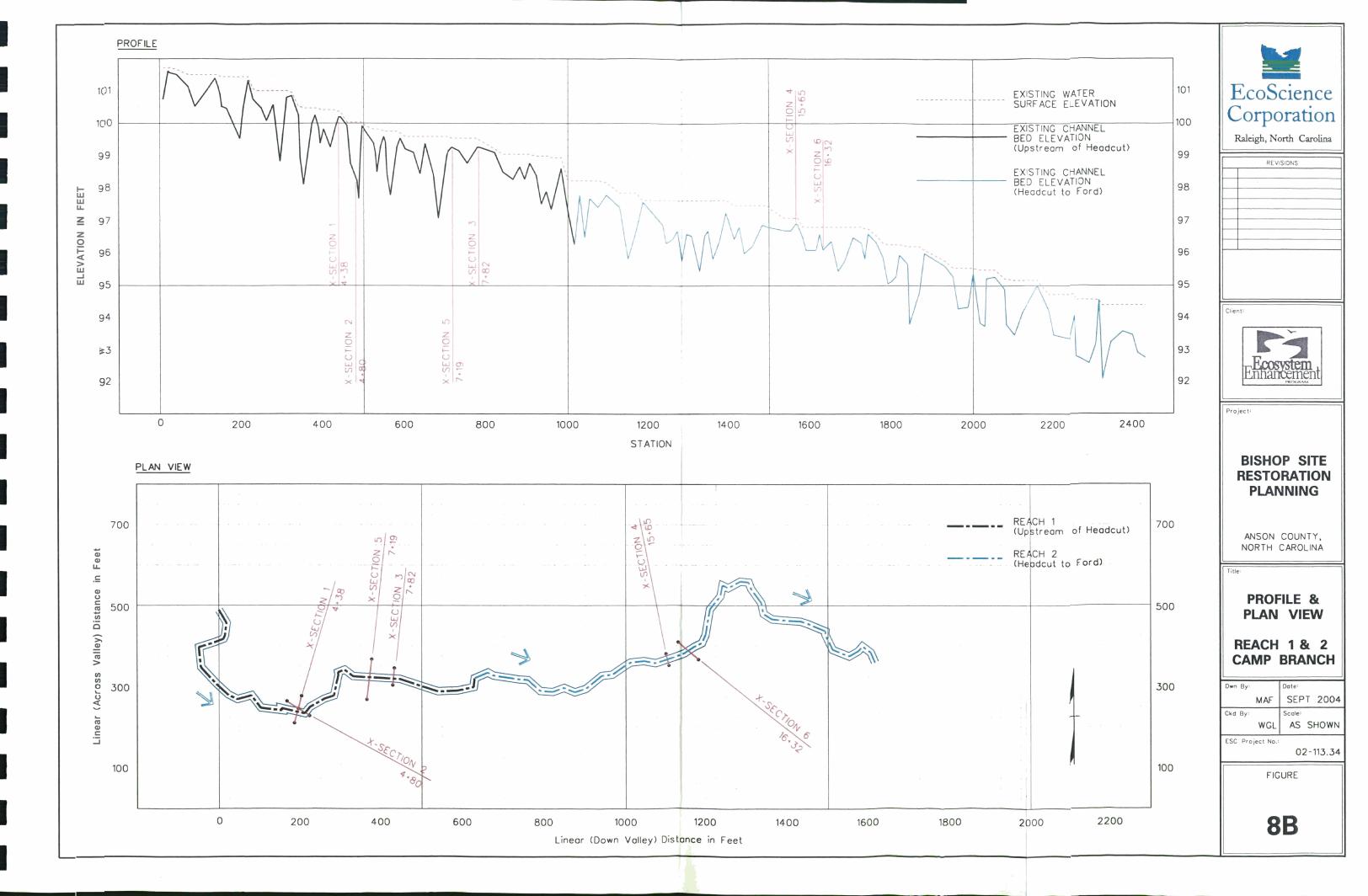

APPENDIX A FIGURES

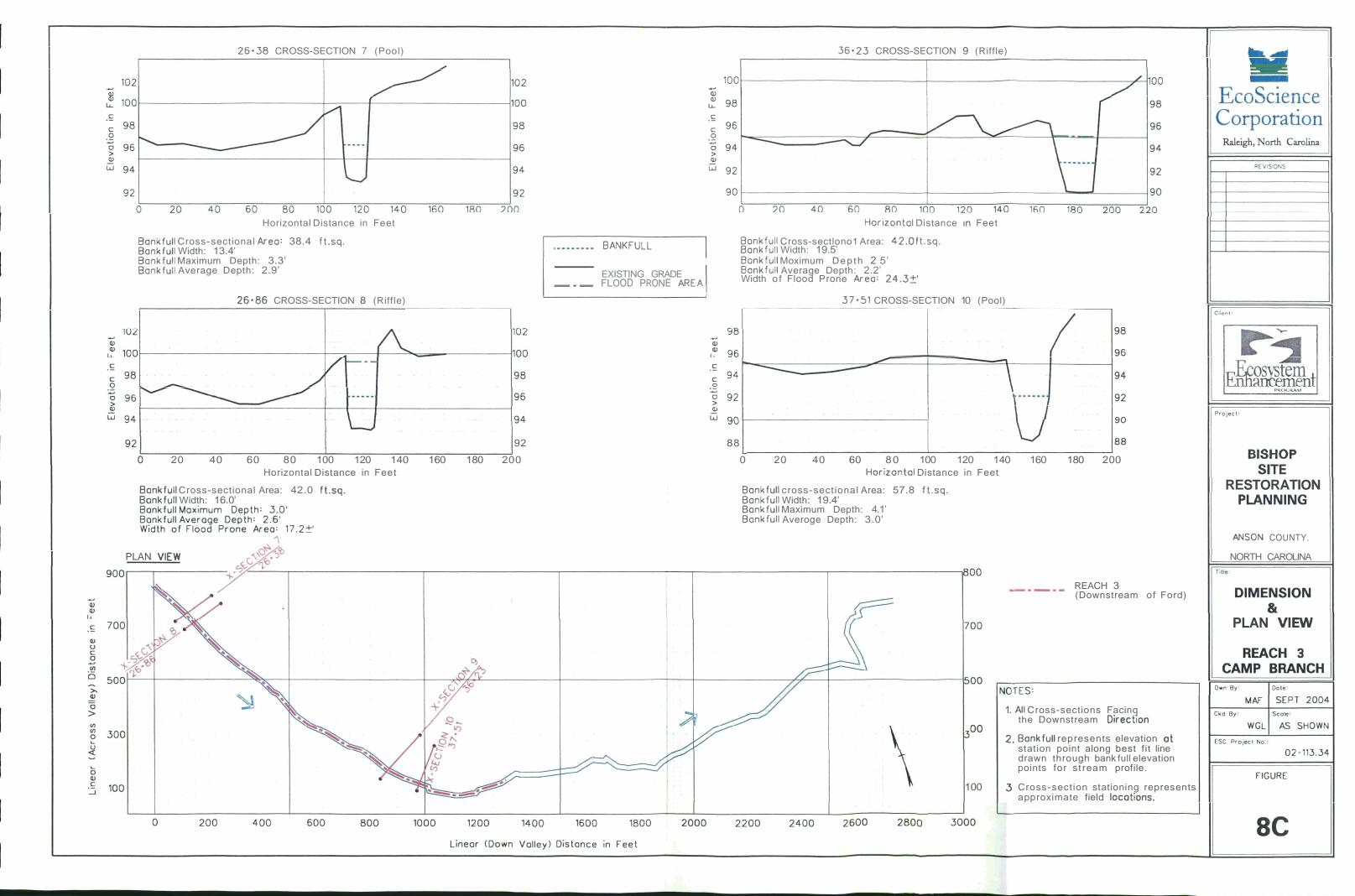


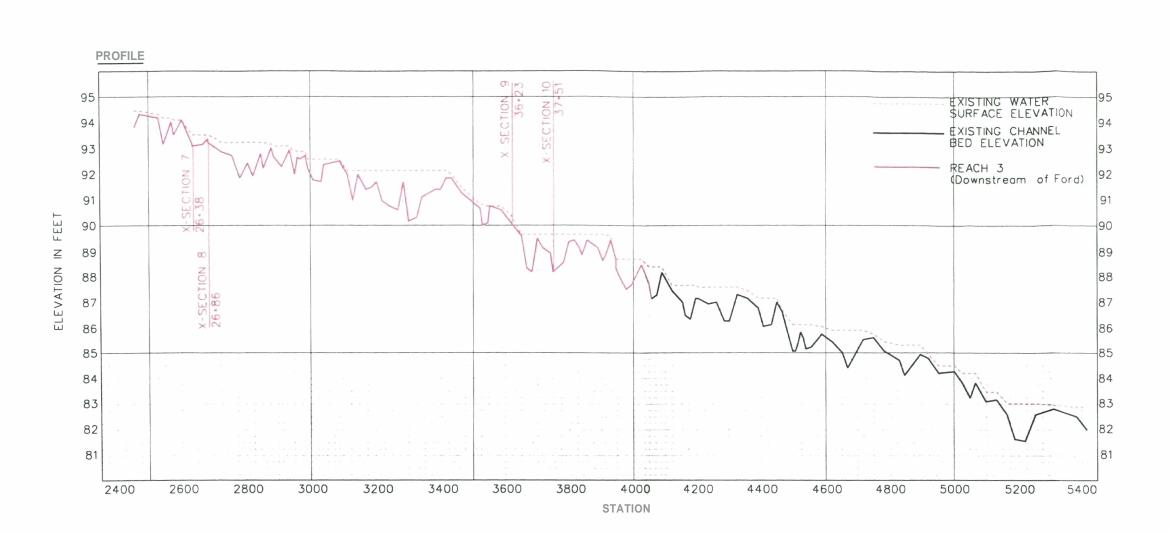


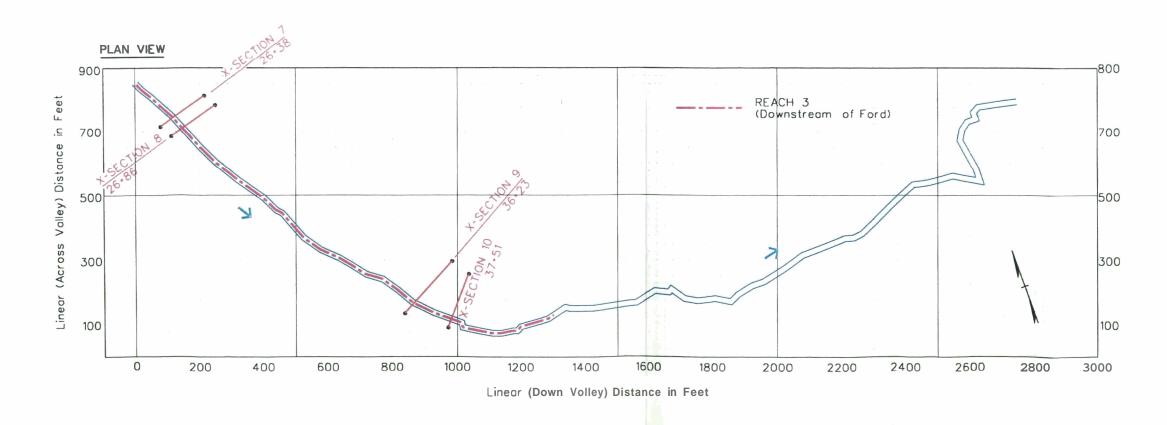


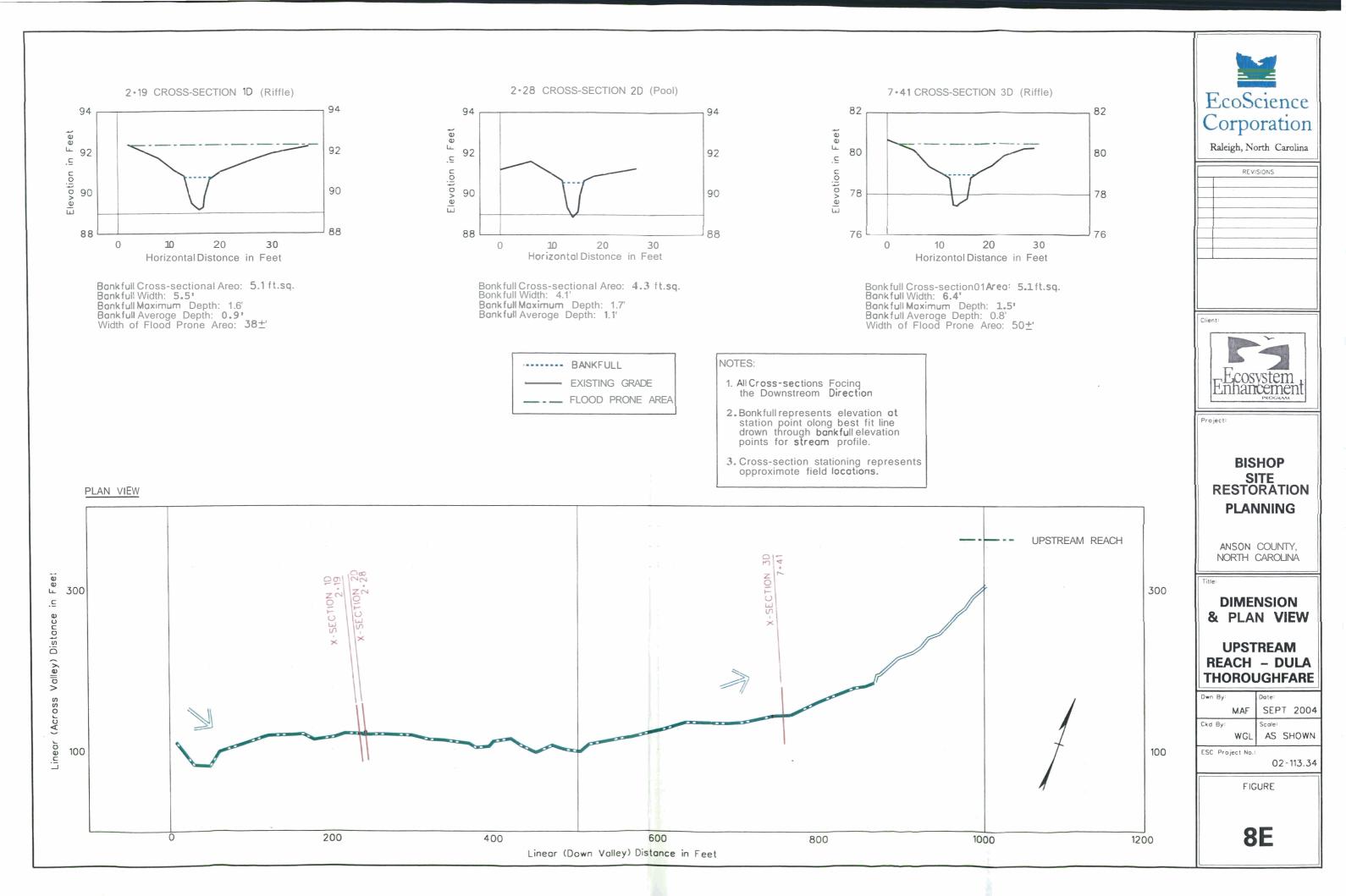


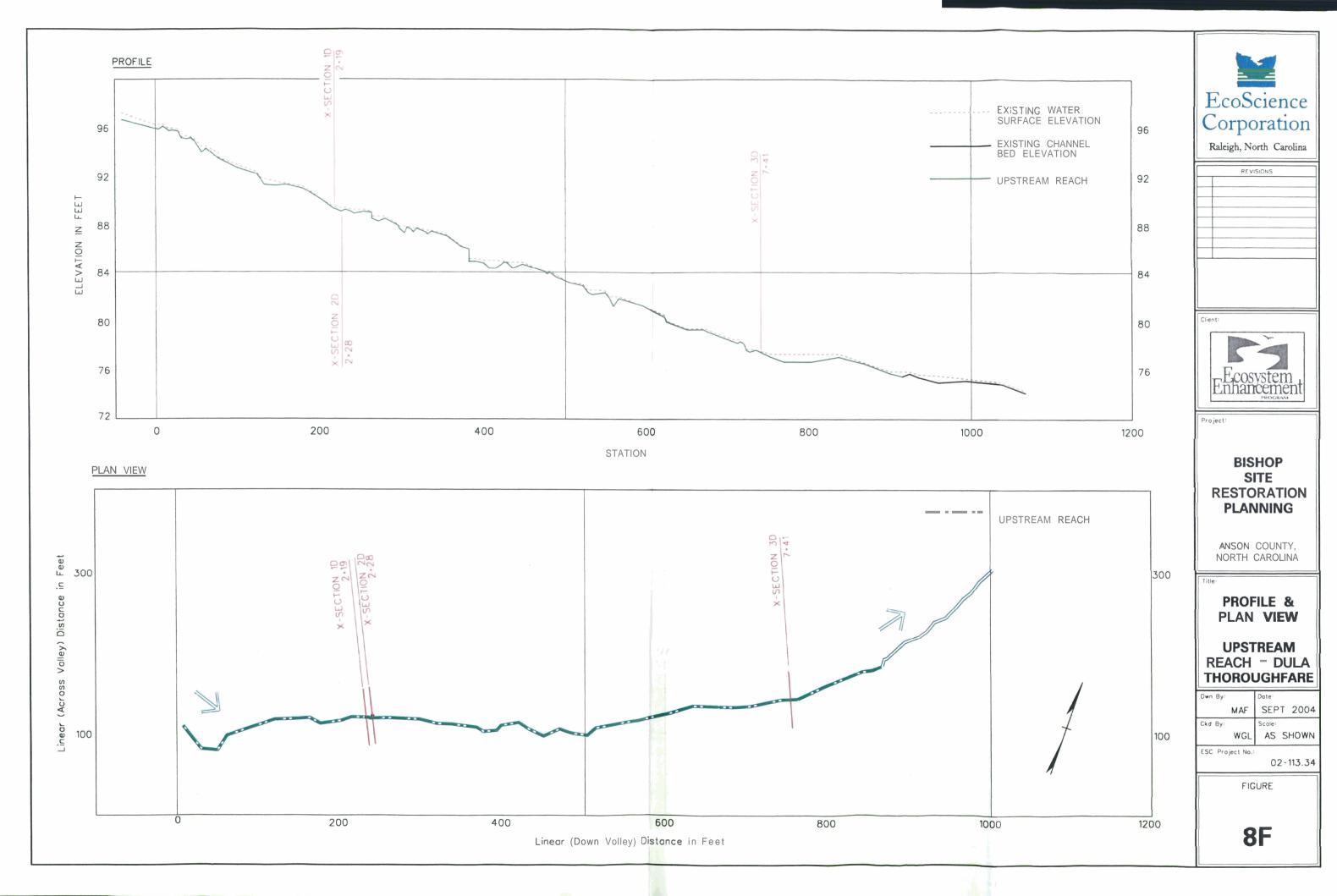


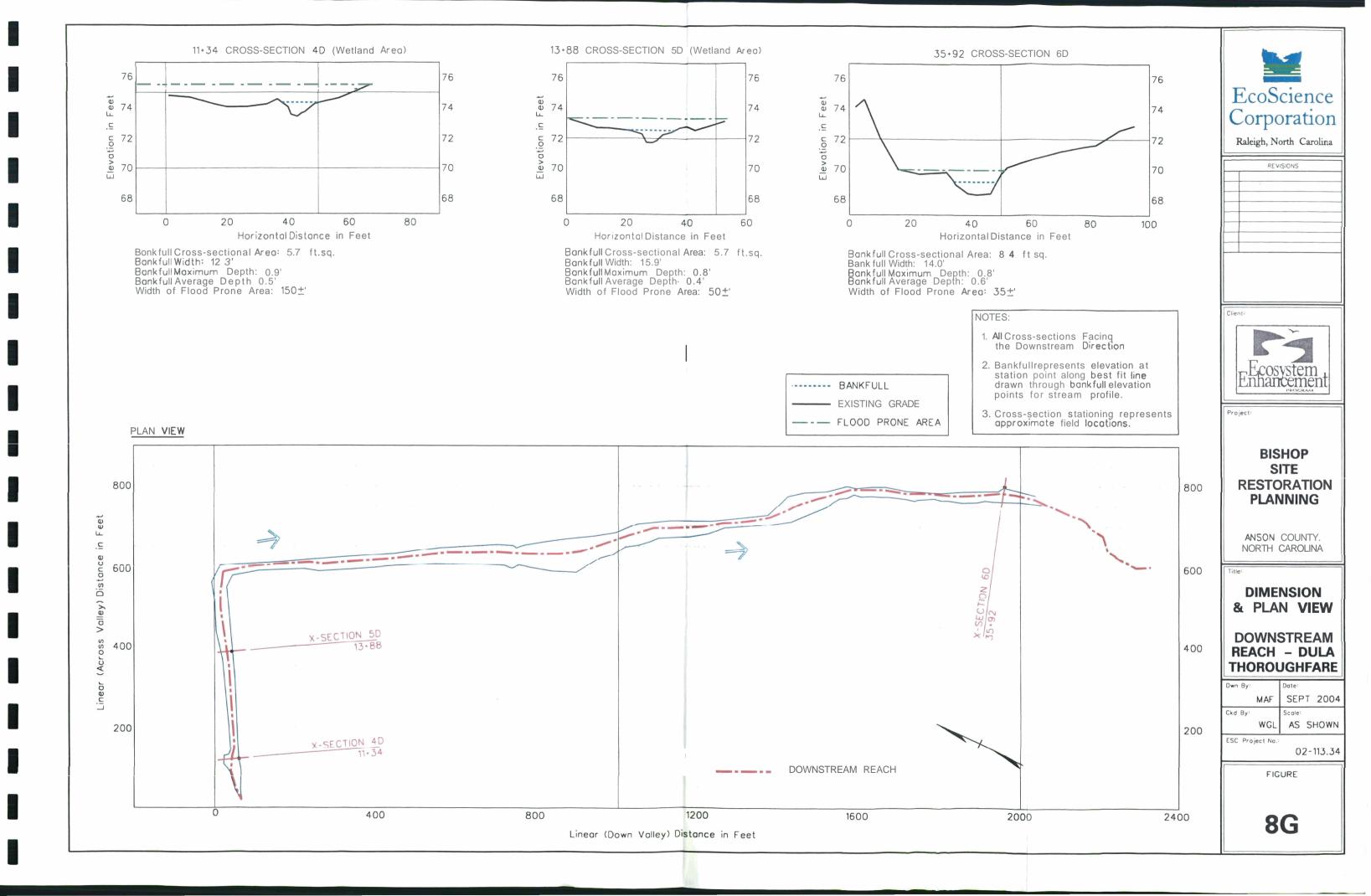


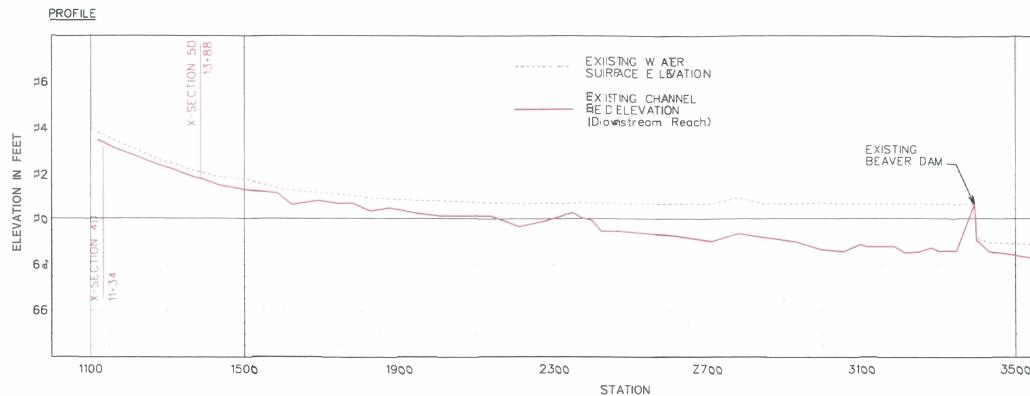


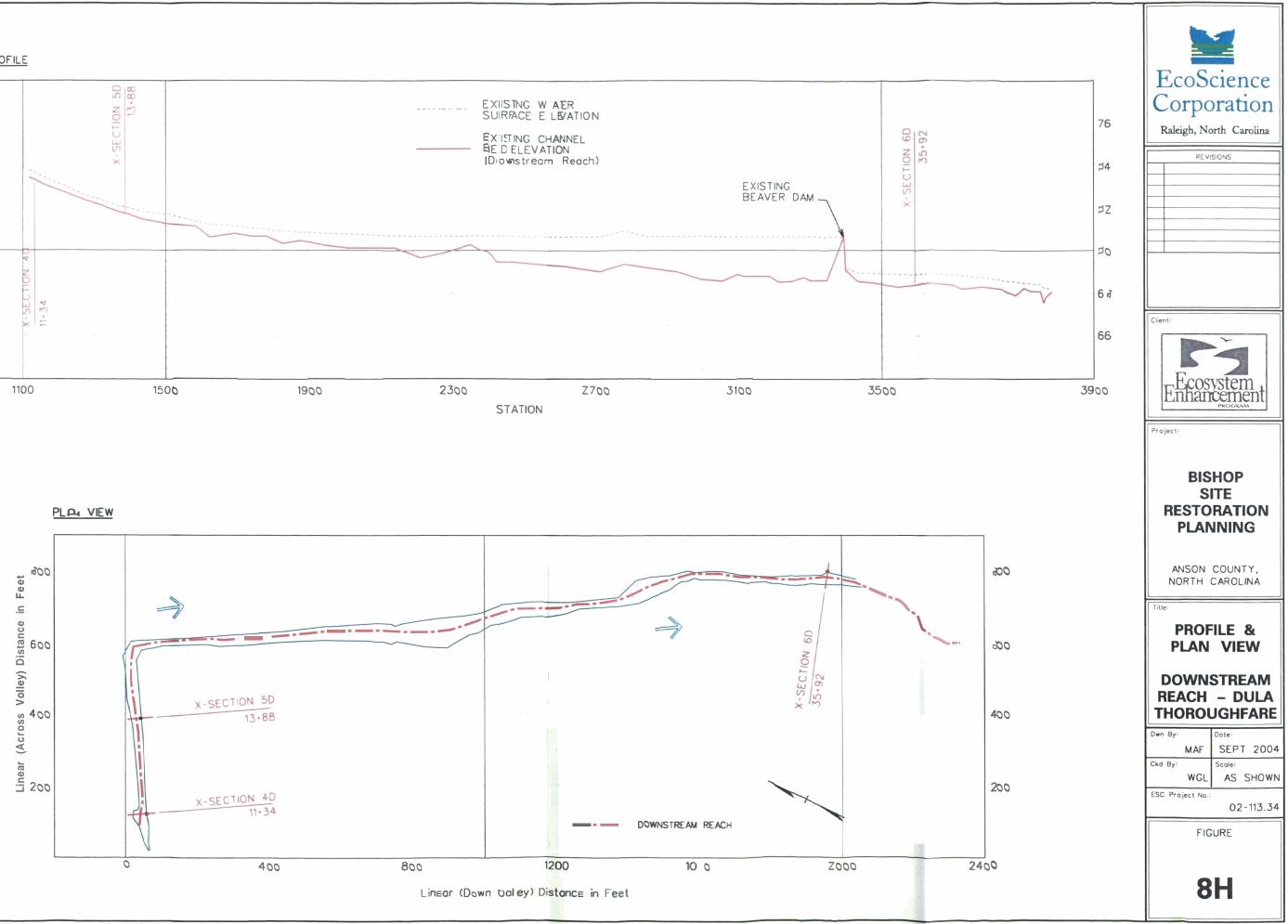

<u>p</u>-

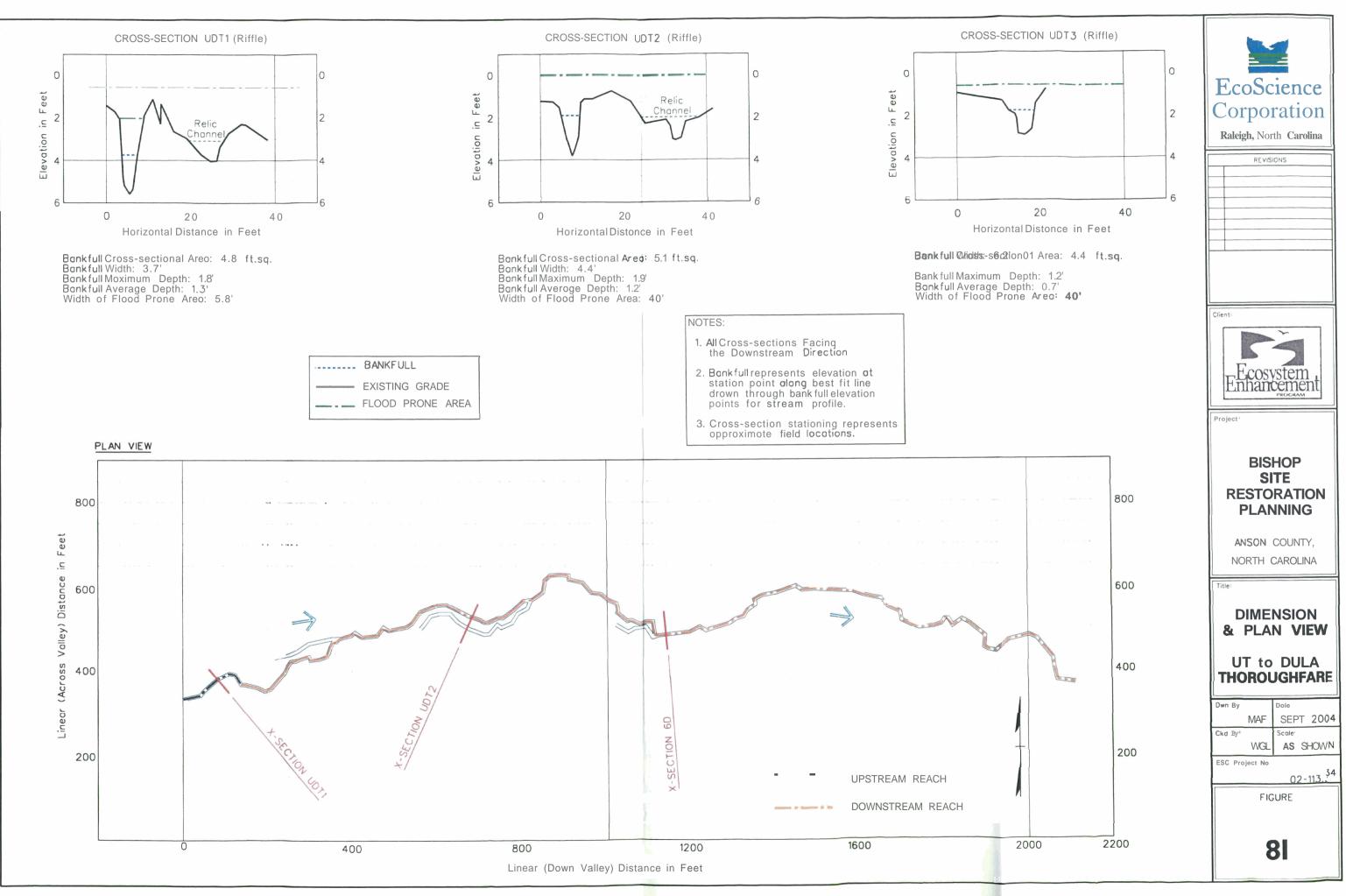


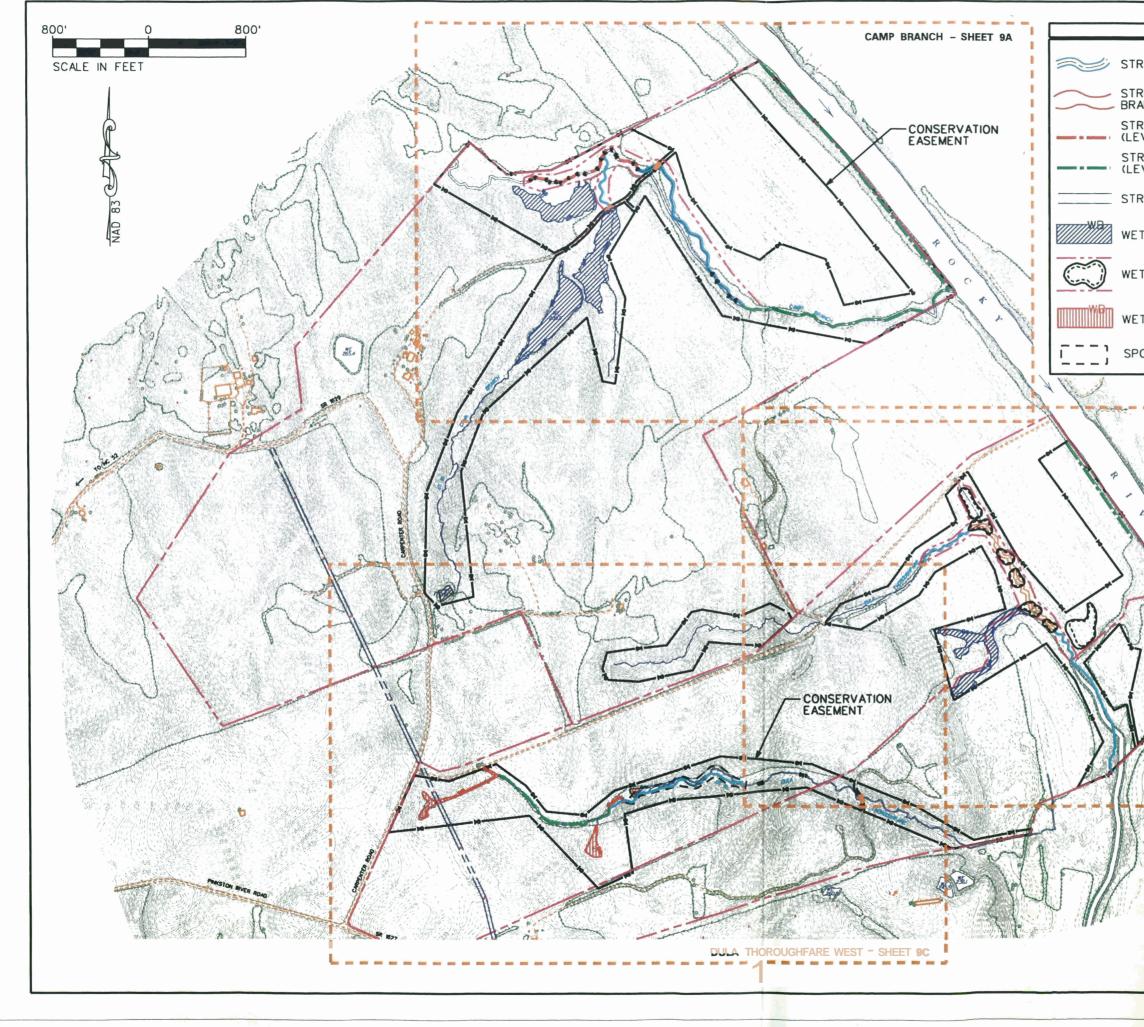


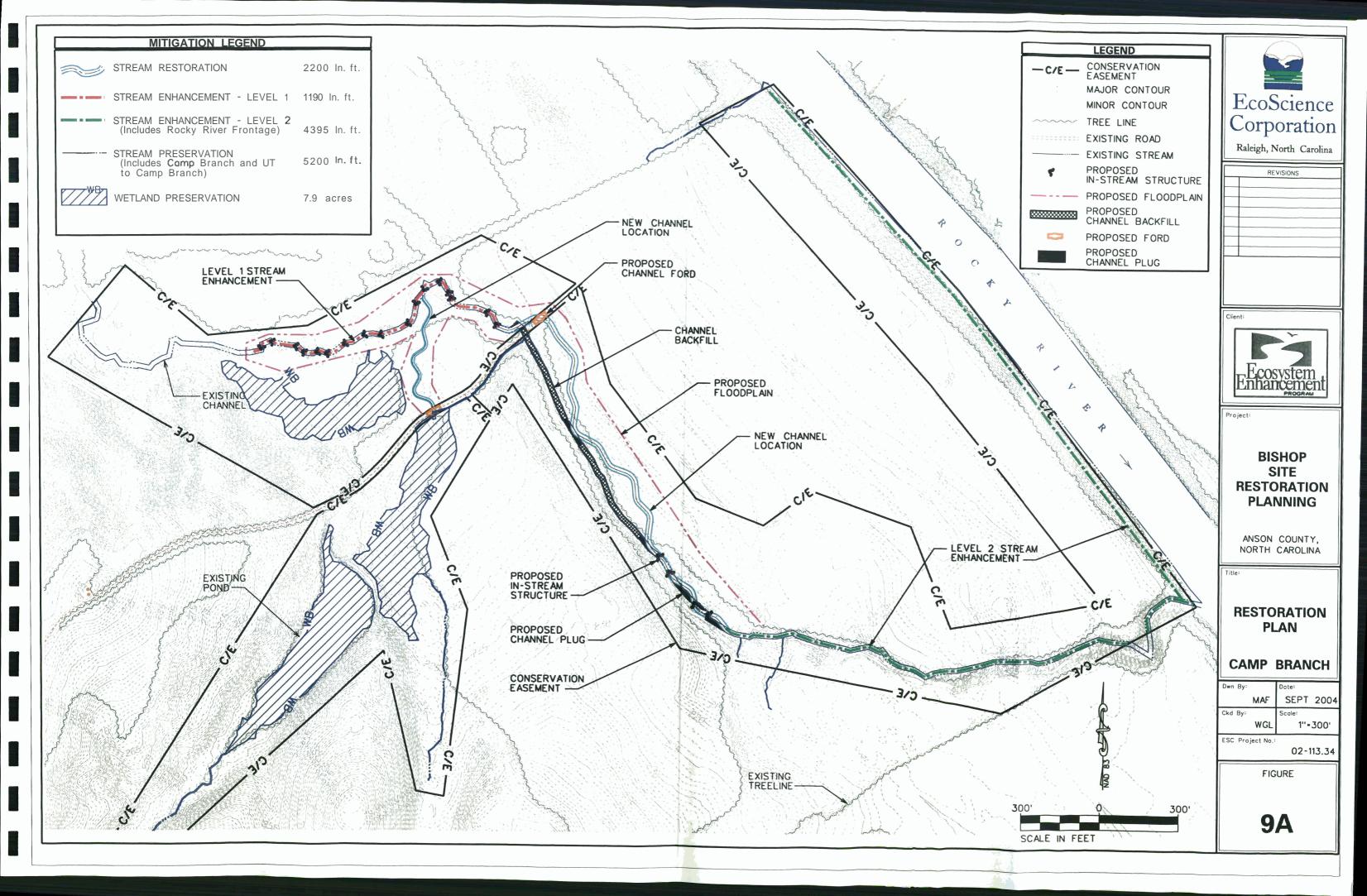


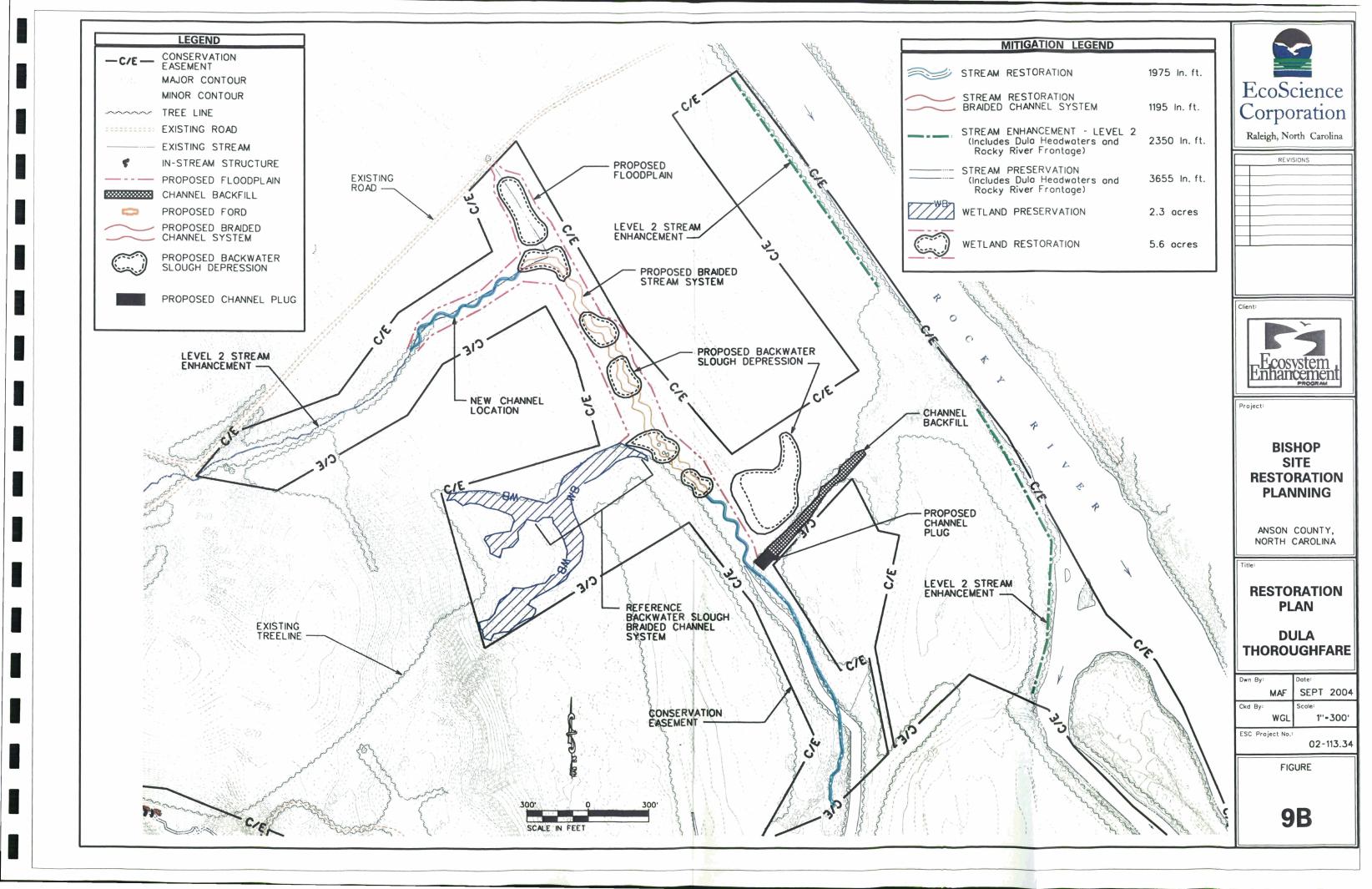


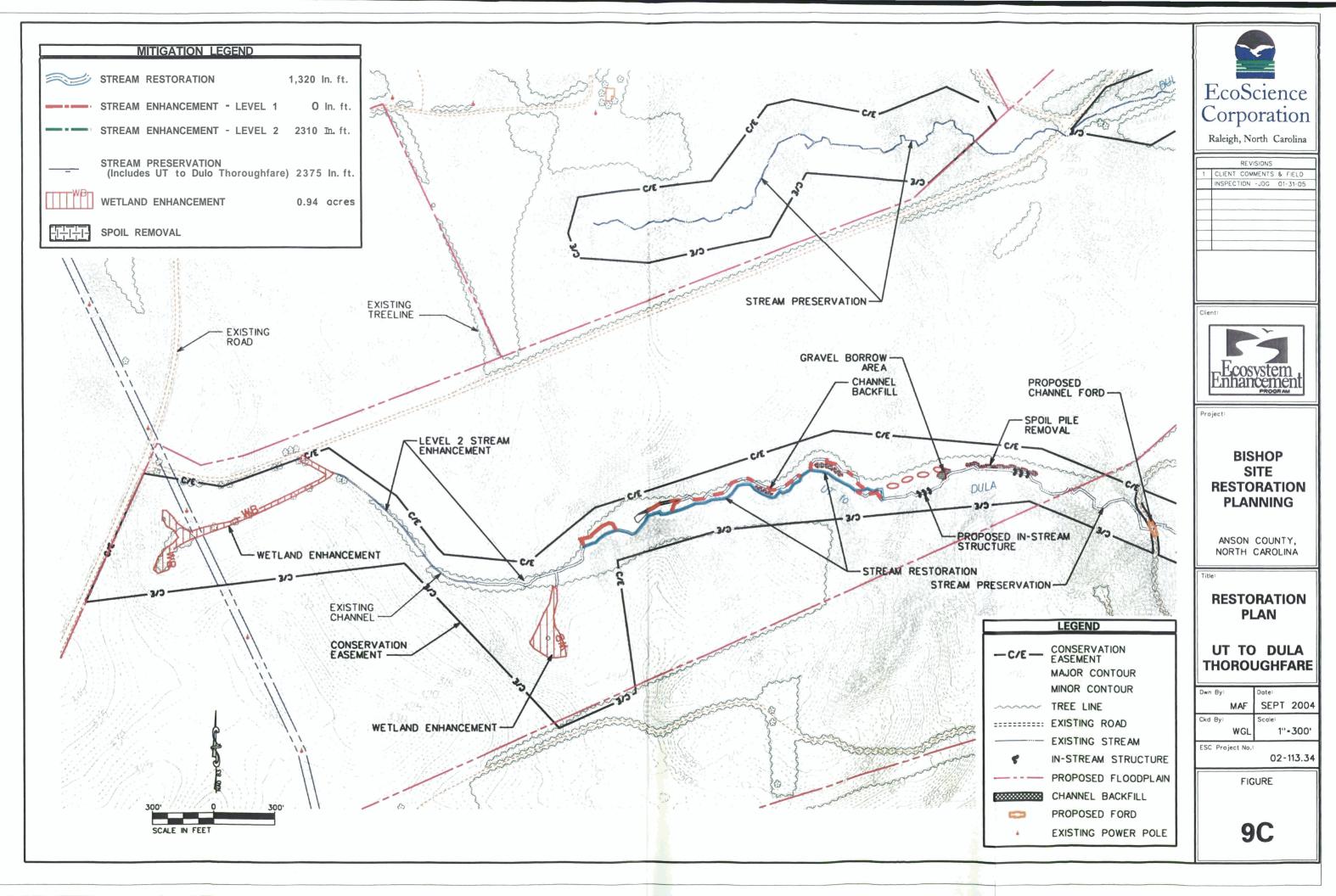


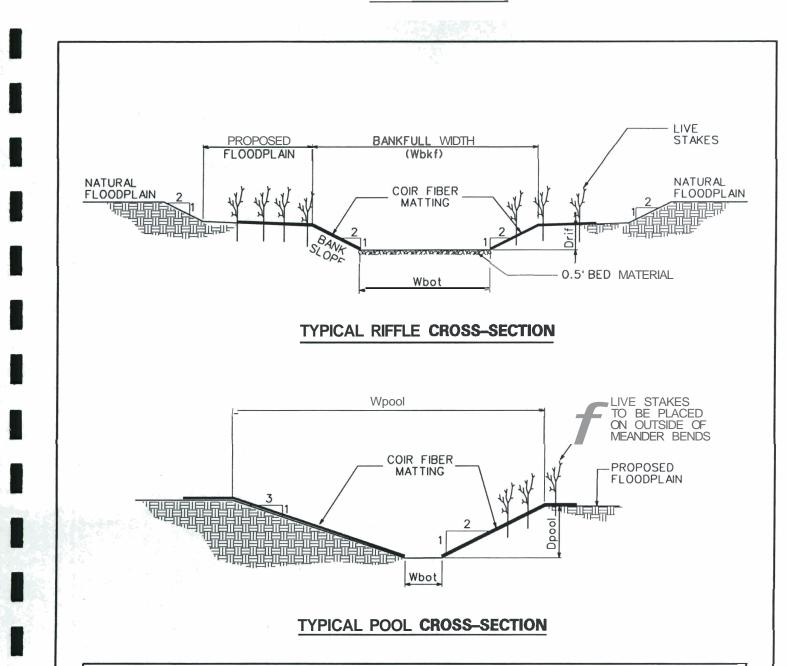











Ckd By: Scale: WGL 1"-800' ESC Project No.:				
IREAM RESTORATION 4,468 In. ft. IREAM RESTORATION 4,468 In. ft. IREAM ENHANCEMENT 1,195 In. ft. IREAM PRESERVATION 11,950 In. ft. IREAM PRESERVATION 11,250 In. ft. ITLAND PRESERVATION 10.2 ocres ETLAND RESTORATION 5.6 ocres POIL REMOVAL DULA THOROUGHFARE EAST POIL REMOVAL DULA THOROUGHFARE EAST POIL REMOVAL DULA THOROUGHFARE EAST SHEET 98 DULA THOROUGHFARE EAST DULA THOROUGHFARE EAST DULA THOROUGHFARE EAST SHEET 98 DULA THOROUGHFARE EAST DULA THOROUGH				
TREAM RESTORATION RADED CHANNEL SYSTEM 1,195 In. ft. TREAM ENHANCEMENT EVEL 1) T,306 In. ft. TREAM PRESERVATION T,306 In. ft. TREAM PRESERVATION T,250 In. ft. ETLAND PRESERVATION T,200 01-3H05 T ETLAND RESTORATION T,004 ocres POIL REMOVAL				
Image: And the initial state of the initinitial state of the initial state of the initial state o				
TREAM ENHANCEMENT EVEL 2) 7,306 in. ft. TREAM PRESERVATION 11,250 in. ft. ETLAND PRESERVATION 10.2 ocres ETLAND RESTORATION 5.6 ocres POIL REMOVAL Conservation DULA THOROUGHFARE EAST SHEET 9B Cent Conservation 0.94 ocres Poil REMOVAL Dula THOROUGHFARE EAST SHEET 9B Conservation Street BISHOP SITE RESTORATION EASEMENT Dura THOROUGHFARE EAST SHEET 9B District Convertion Conservation Easement Dura THOROUGHFARE EAST SHEET 9B Distreet Street Bishop Site Restoration Planning Dura THOROUGHFARE EAST SHEET 9B Distreet Street Bishop Site Restoration Planning Dren By: Conservation Care By: Distreet Street Street Conservation Conserva	REAM ENHANCEMENT			
IREAM PRESERVATION 11,250 In. ft. ETLAND PRESERVATION 10.2 ocres ETLAND RESTORATION 5.6 ocres ETLAND ENHANCEMENT 0.94 ocres POIL REMOVAL DULA THOROUGHFARE EAST CONSERVATION EASEMENT CONSERVATION EASEMENT DULA THOROUGHFARE EAST DULA THOROUGHFARE EAST DULA THOROUGHFARE EAST DULA THOROUGHFARE EAST DULA THOROUGHFARE EAST DULA THOROUGHFARE EAST DULA THOROUGHFARE EAST	TREAM ENHANCEMENT			
ETLAND PRESERVATION 10.2 ocres ETLAND RESTORATION 5.6 ocres POIL REMOVAL DULA THOROUGHFARE EAST POIL REMOVAL		1 CLIENT COMMENTS & FIELD		
ETLAND RESTORATION 5.6 ocres ETLAND ENHANCEMENT 0.94 ocres POIL REMOVAL DULA THOROUGHFARE EAST SHEET 9B Clent: Clent: DULA THOROUGHFARE EAST SHEET 9B Project: BISHOP SITE RESTORATION PLANNING ANSON COUNTY, NORTH CAROLINA Title: RESTORATION PLAN Dute: SEPT 2004 Cid By: MAF SEPT 2004 Cid By: MAF SEPT 2004 Cid By: Cid				
ETLAND ENHANCEMENT 0.94 ocres POIL REMOVAL	LILAND PRESERVATION 10.2 ocres			
POIL REMOVAL	ETLAND RESTORATION 5.6 acres			
DULA THOROUGHFARE EAST SHEET 98 Project: BISHOP SITE RESTORATION PLANNING ANSON COUNTY, NORTH CAROLINA Title: RESTORATION PLAN Title: RESTORATION PLAN Den By: MAF SEPT 2004 Ckd By: WGL 1''-800' ESC Project No.' 02-113.34	ETLAND ENHANCEMENT 0.94 ocres			
DULA THOROUGHFARE EAST SHEET 9B CONSERVATION EASEMENT CONSERVATION EASEMENT CONSERVATION EASEMENT Project: BISHOP SITE RESTORATION PLANNING ANSON COUNTY, NORTH CAROLINA Title: RESTORATION PLAN Title: RESTORATION PLAN Count of the second Count of the	POIL REMOVAL	Client:		
MAF SEPT 2004 Ckd By: Scole: WGL 1"-800' ESC Project No.: 02-113.34	SHEET 9B	Project: BISHOP SITE RESTORATION PLANNING ANSON COUNTY, NORTH CAROLINA		
WGL 1"-800' ESC Project No.: 02-113.34		MAF SEPT 2004		
02-113.34		WGL 1"-800'		
FIGURE 9		02-113.34		
9		FIGURE		
		9		

and the second second

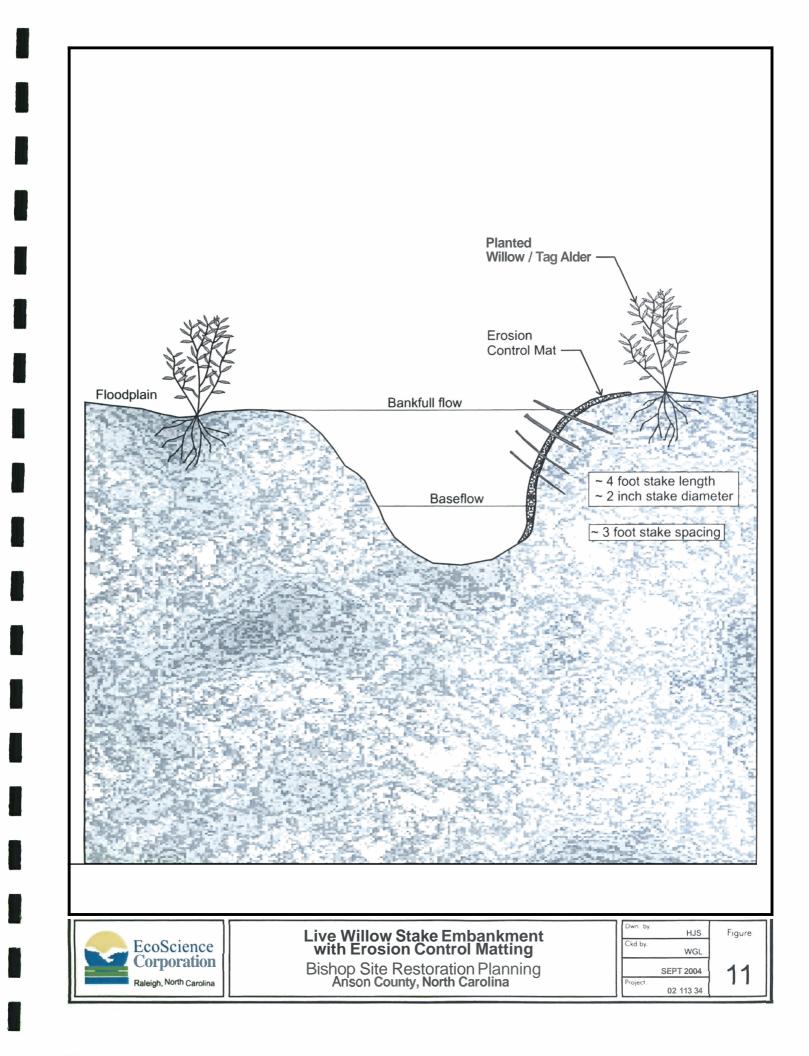
CROSS-SECTION DIMENSIONS							
REACH	Wbkf (ft.)	Wbot (ft.) Riffle	Driff (ft.)	Wpool (ft.)	Wbot (ft.) Pool	Dpool (ft.)	Width/Depth Ratio
 CAMP BRANCH - REACH 1& 2	21.5	12.3	2.3	28	12	3.2	12
CAMP BRANCH - REACH 3	22.4	12.4	2.5	29.1	12.1	3.4	12
 UT TO CAMP BRANCH	10.6	5	1.4	15.9	7.9	1.6	12
DULA THOROUGHFARE	8.6	4.6	1.0	12.0	6.5	1.1	12
UT TO DULA THOROUGHFARE	7.5	4.3	0.8	10.5	6	0.9	12

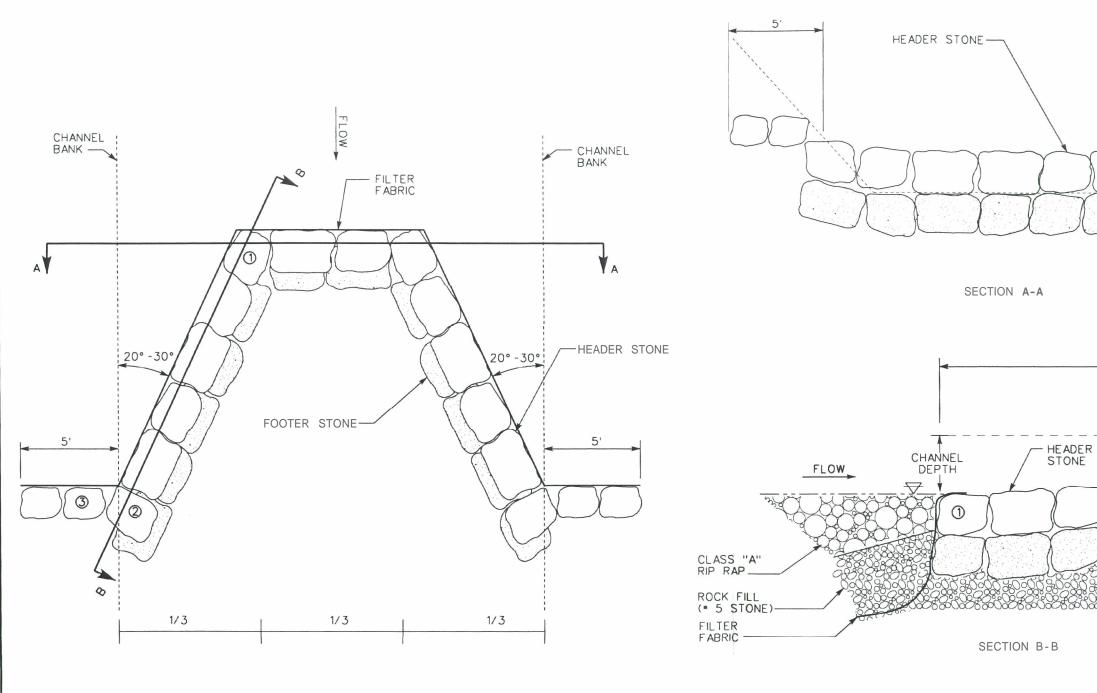
TYPICAL CHANNEL SECTIONS BISHOP SITE RESTORATION PLANNING ANSON COUNTY. NORTH CAROLINA

Project:

G ESC Project No.: 02-113.34

MAF

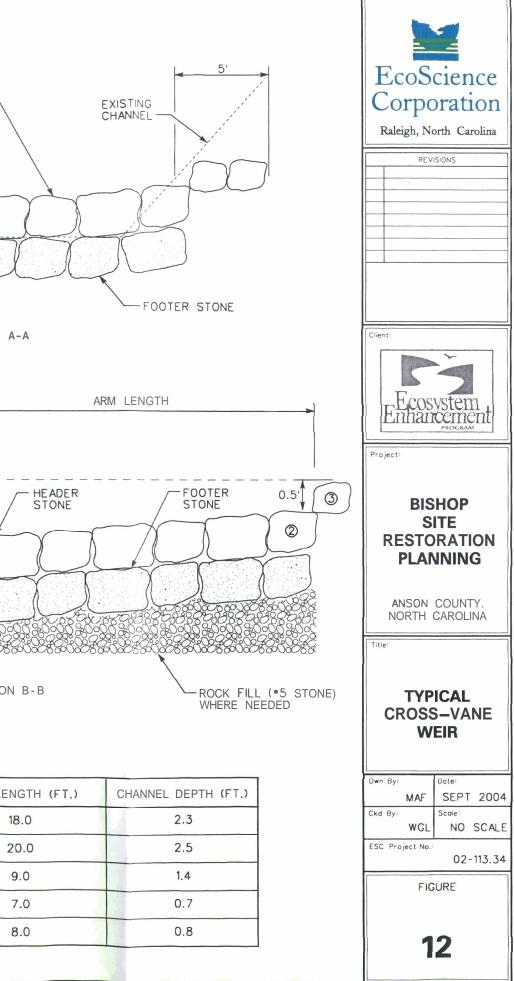

)wn By:


Ckd By

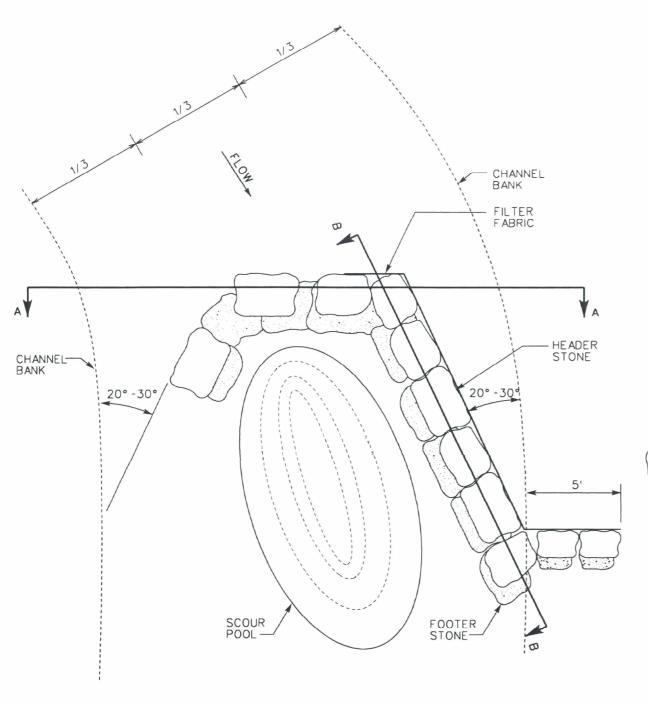
 wcl
 Figure

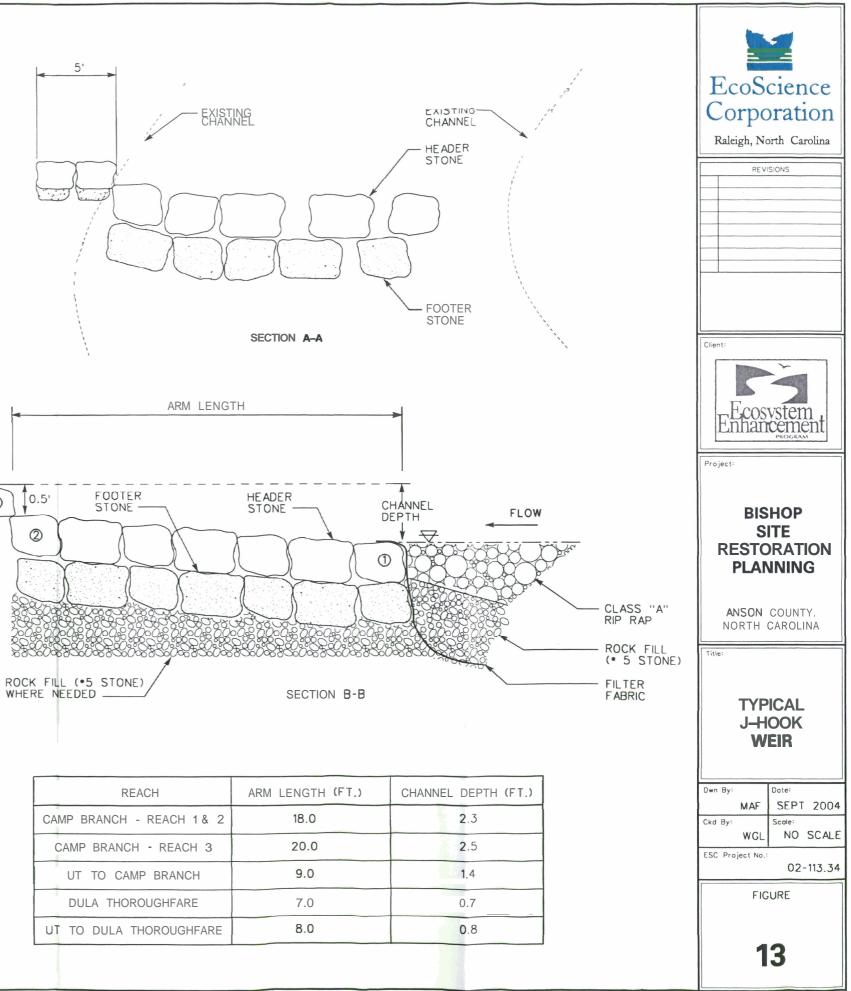
 2004
 10

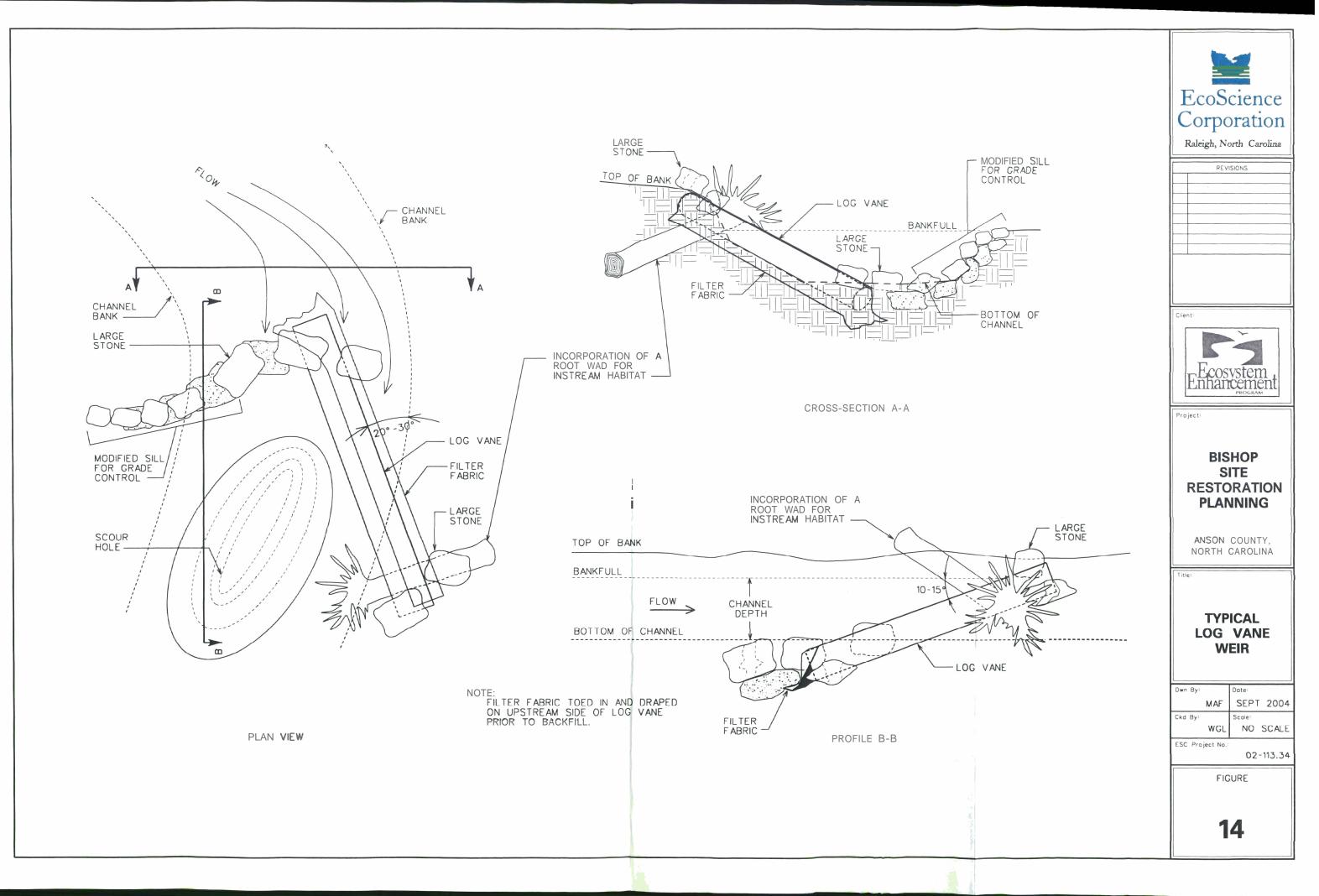
 CALE
 10

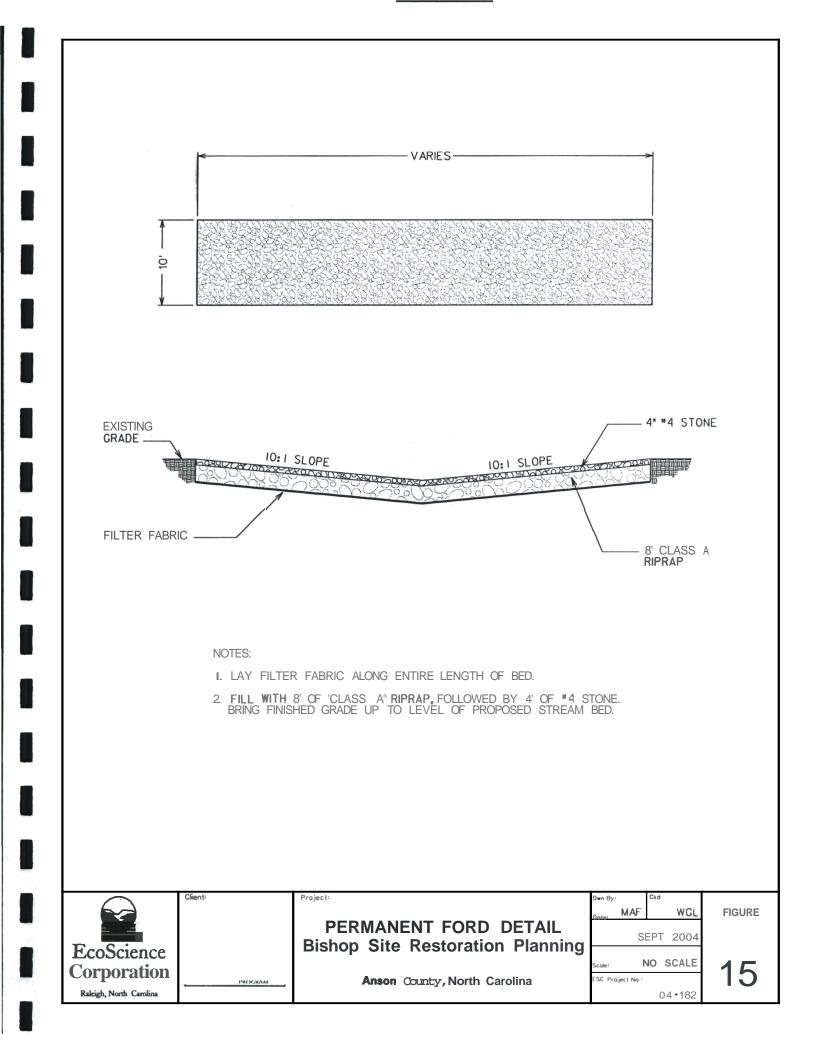


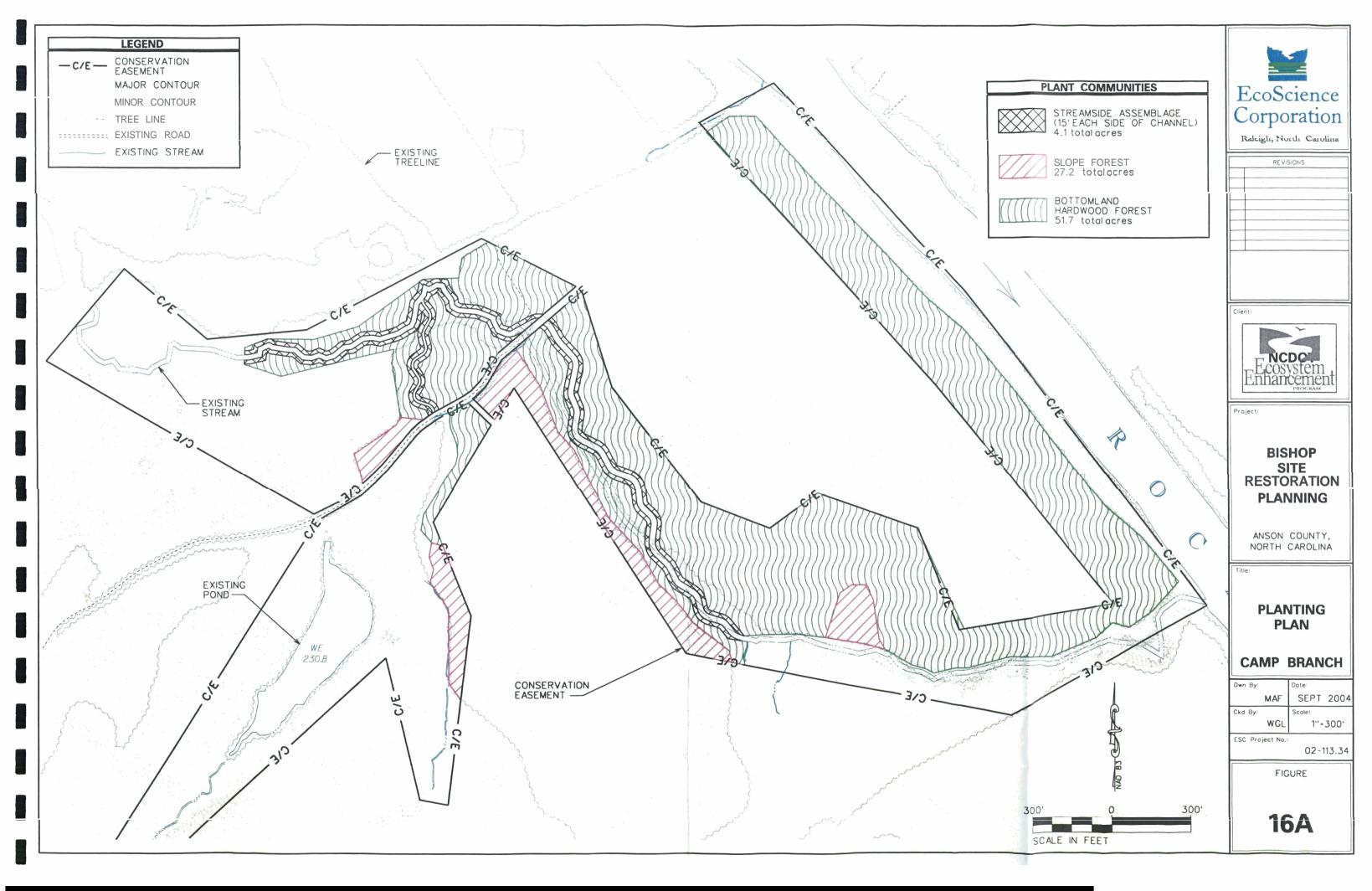
PLAN VIEW

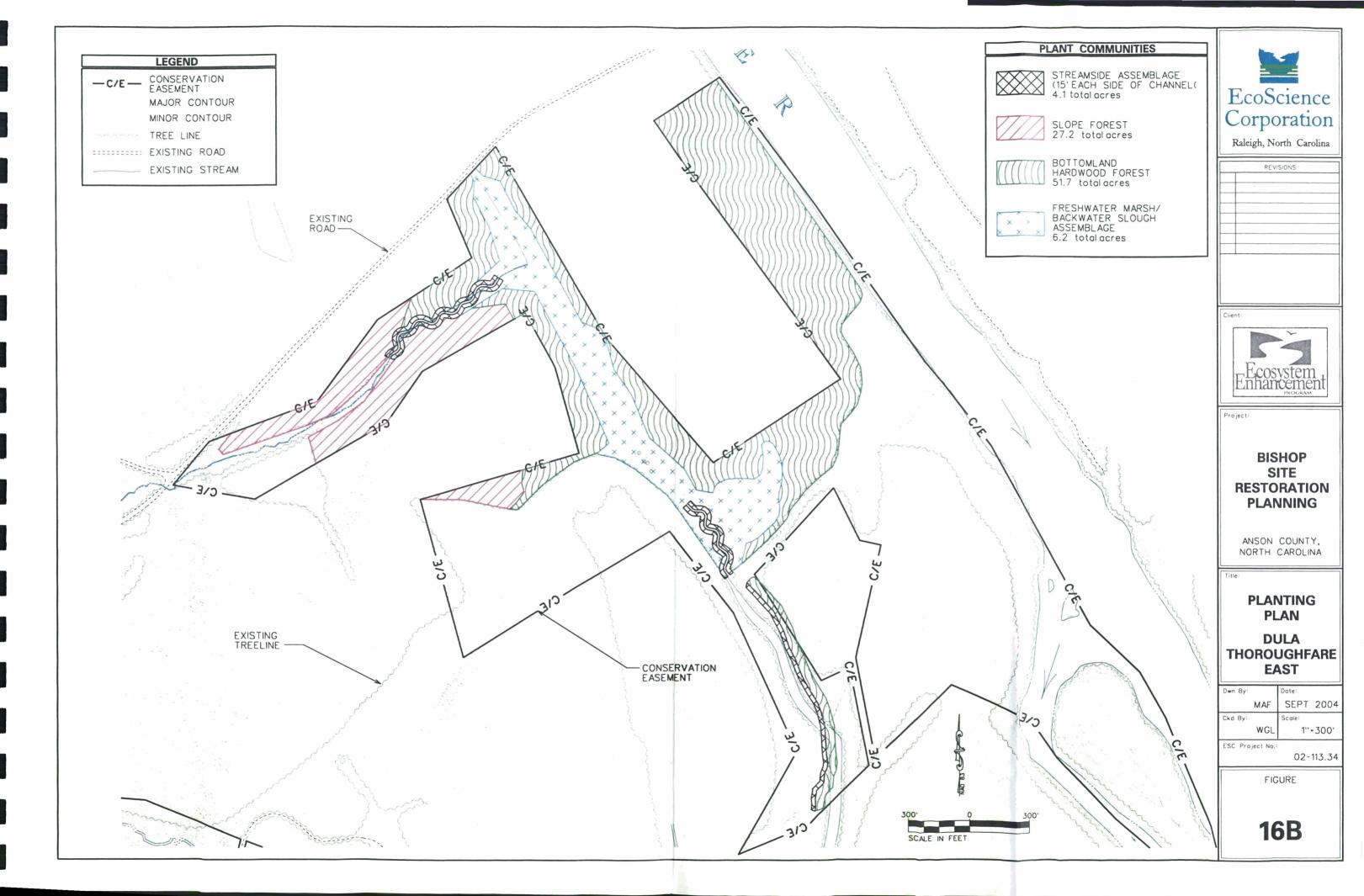

NOTE: HEADER AND FOOTER STONES ARE LARGE, ANGULAR BOULDERS

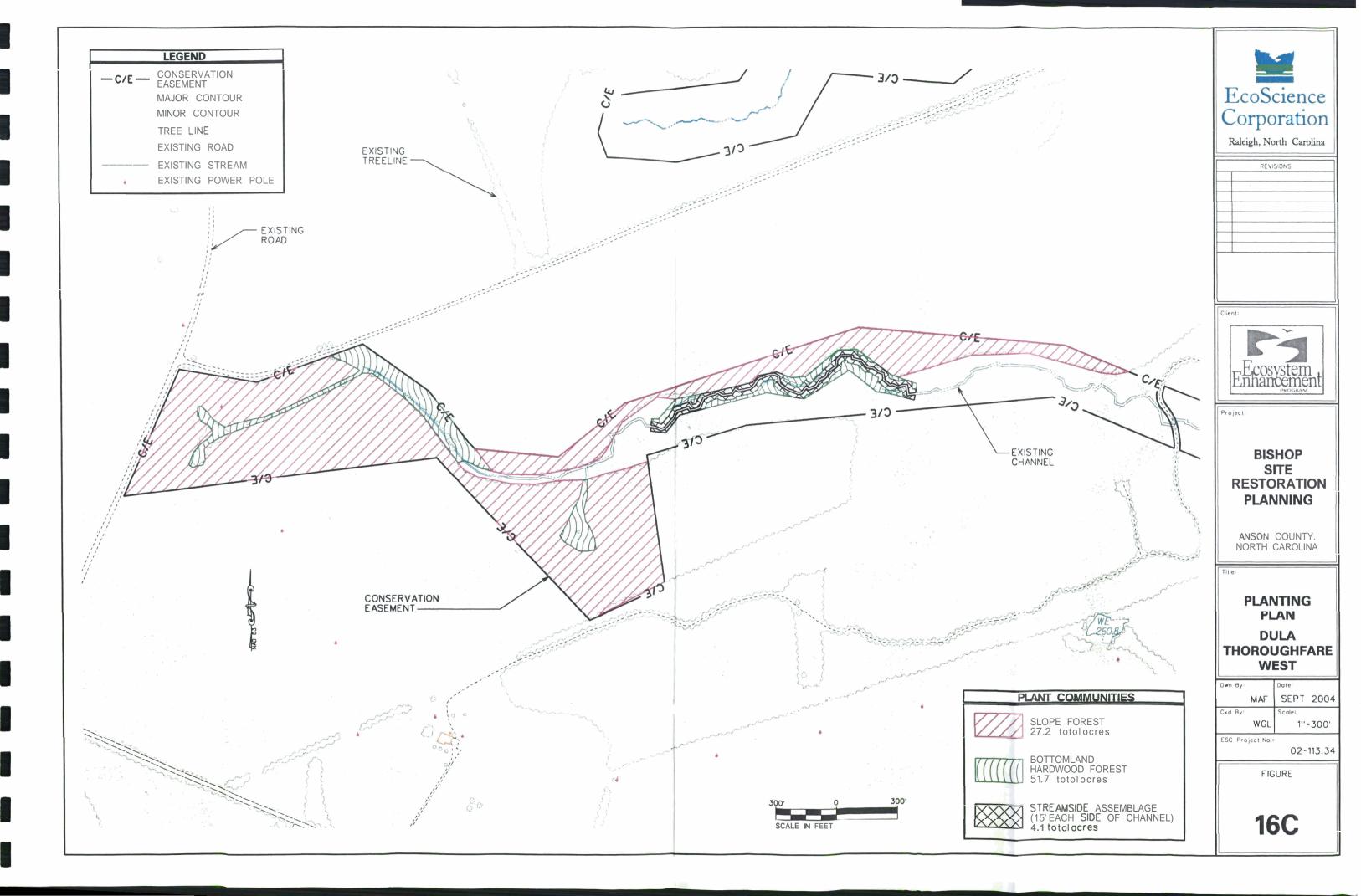

		The second se			
	REACH	ARM LENGTH (FT.)			
	CAMP BRANCH - REACH 1 & 2	18.0			
	CAMP BRANCH - REACH 3	20.0			
	UT TO CAMP BRANCH	9.0			
	DULA THOROUGHFARE	7.0			
·-	UT TO DULA THOROUGHFARE	8.0			

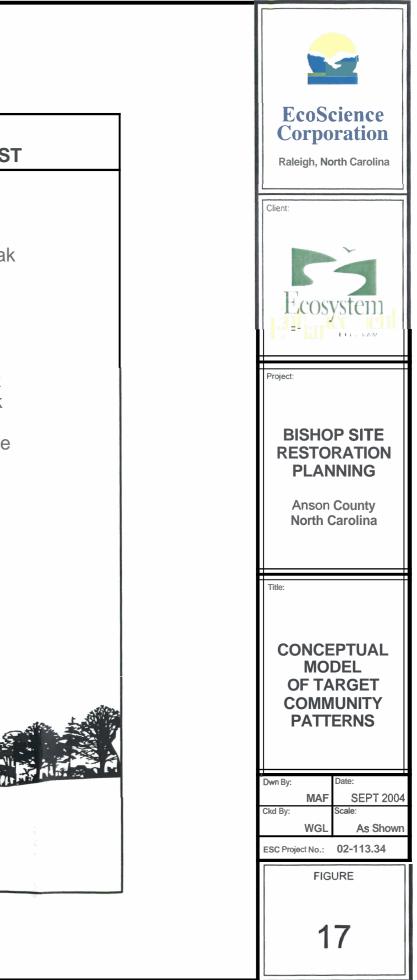

3






PLAN VIEW


NOTE: HEADER AND FOOTER STONES ARE LARGE, ANGULAR BOULDERS



COMMUNITY ASSEMBLAGE	SLOPE FOREST	STREAMSIDE ASSEMBLAGE	BOTTOMLAND HARDWOOD FOREST
CANOPY VEGETATION	Mockernut Hickory Pignut Hickory White Oak Sourwood American Holly Flowering Dogwood	<text><text><text><text></text></text></text></text>	Swamp Chestnut Oak American Elm Sugarberry Green Ash Shagbark Hickory Willow Oak Northern Red Oak Southern Red Oak Black Gum American Sycamore
LAND FORM	Floodplain Slopes	Stream Banks and Adjacent Flood Plain	Floodplain Flats

800' 0 SCALE IN FEET _____ 5 ast alt ٢ 0 - - -|___ 0 4. 10 2 0 WE 265.4 0 23 1 Sills 0 87. 1

800'

NAD 83 C

Se levo 橋

11

11

11

39

2 na:

10

\$11

340

Stat \$ 827

MITIGATION LEGEND	
> NEW CHANNEL LOCATION	
NEW BRAIDED CHANNEL SYSTEM	EcoScience Corporation
EXISTING STREAM	Raleigh, North Carolina
WETLANDS	REVISIONS
GROUNDWATER GAUGES	INSPECTION -JDG 01-31-05
PERMANENTLY MONUMENTED CROSS-SECTIONS	
STREAM MONITORING REACH (450 ln. ft.)	
VEGETATION SAMPLNG PLOTS 10m x 10m (32.8 ft. x 32.8 ft.)	Client:
	Project:
	BISHOP SITE RESTORATION PLANNING ANSON COUNTY, NORTH CAROLINA
8.	Title: MONITORING PLAN
	Dwn By: Date: MAF DEC 2004 Ckd By: Scale:
	JCD 1"-800' ESC Project No.: 02-113.34
	FIGURE
	18

APPENDIX B

1

TABLE 2A BISHOP STREAM RESTORATION SITE Morphological Characteristics of Existing Channels

Variables		Camp Branch Exisiting Channel	1e	UT Camp Branch
	stream of sut	Reach 2: Headcut to Ford	Reach 3: D	Downstream of Pond
1 Stream Tyne				
			2	ט/ח
Z Urainage Area (mi ⁻)	2.4	2.4	2.7	0.3
3 Bankfull Discharge (cfs)	168	168	182	37.3
		Dimension Variables (Feet)		
4 Bankfull Cross Sectional Area (A _{bkf})	38.7	38.7	42	9.4
5 Bankfull Width (W _{bkf})	Mean: 19.1	Mean: 18.3	Mean: 17.8	Mean: 11
	Range: 16.5-21.3	Range: NA	Range: 16-19.5	Range: 6 - 15.7
6 Bankfull Mean		Mean: 2.1	Mean: 2.4	Mean: 1.1
Depth (D _{bkt})	Range: 1.8-2.2	2	Range: 2.2-2.6	Range: 0.6 - 1.6
7 Bankfull Maximum		Mean: 2.7	2.8	Mean: 2.1
Depth (D _{max)}		Range: NA	Range: 2.5-3.0	Range: 1.4 - 2.7
8 Pool Width (W _{pool})		Mean: 12.9	16.4	Mean: NA
		Range: NA	Range: 13.4-19.4	Range: NA
9 Maximum Pool	7	Mean: 3.2	Mean: 3.7	Mean: NA
Depth (D _{pool})	!	Range: NA	Range: 3.3-4.1	Range: NA
10 Width of Floodprone		Mean: 100	20.8	Mean: NA
Area (W _{fpa})	Range: 75-180	Range: NA	Range: 17.2-24.3	Range: NA
		Dimension Ratios		
11 Entrenchment Ratio	Mean: 6.6	Mean: 5.5	Mean: 1.1	Mean: 11.5
(W ^{fpa} /W ^{bkf})	Range: 3.8-8.5	Range: NA	Range: 1.1-1.2	Range: 6.4 - 16.6
12 Width/Depth Ratio		Mean: 8.7	7.6	Mean: 15
W _{bkf} /D _{bkf})	Range: 7.5-11.8	Range: NA	Range: 6.2-8.9	Range: 3.75 - 26.17
13 Max. Drift/Drut Ratio	Mean: 1.2	Mean: 1.3	Mean: 1.1	Mean: NA
	Range: 1.2-1.5	Range: NA	1.1-1.2	Range: NA
14 Low Bank Height/		Mean: 1.5	2.3	Mean: 1.04
Max. D _{bkf} Ratio		Range: NA	Range: 2.2-2.4	Range: 1 - 1.07
15 Pool Depth/Bankfull		Mean: 1.2	1.6	Mean: NA
Mean Depth (D _{pool} /D _{bkf})	Range: NA	Range: NA	Range: 1.4-1.7	Range: NA
16 Pool width/Bankfull	`	Mean: 0.7	1.0	Mean: NA
Width (W _{pool} /W _{bkf})	Range: NA	Range: NA	Range: 0.8-1.1	Range: NA
17 Pool Area/Bankfull		Mean: 0.8	1.2	Mean: NA
Cross Sectional Area	Range: NA	Range: NA	Range: 0.9-1.4	Range: NA
		Pattern Variables (Feet)		
18 Pool to Pool Spacing	Mean: 74	Mean: 74		
(L _{P-P})	Range: 45-145	Range: 45-145	No distinctive repetitive	
19 Meander Length (L _m)	Mean: 133	Mean: 133	due to straightening activities	No distinctive repetitive
	Rande' 66-240	Pance, 66-240		nattern of rifflee and poole

	Range: 66-240	66-240	Range: 66-240	9 9	pattern of riffles and pools
20 Belt Width (W _{belt})	Mean: 43	3	Mean: 43	Mean: 37	due to straightening
	Range: 30-97	30-97	Range: 30-97	Range: 19-79	activities
21 Radius of Curvature (R_c)	Mean: 41	-	Mean: 41	No distinctive repetitive	
	Range: 17-200	17-200	Range: 17-200	pattern of riffles and pools	
22 Sinuosity (Sin)		1.18	1.18	1.05	1.04
			Pattern Ratios		
23 Pool to Pool Spacing/	Mean: 3.8	8	Mean: 4.0		
Bankfull Width (L _{p-p} /W _{bkf})	Range: 2.3-7.4	2.3-7.4	Range: 2.5-7.9	No distinctive repetitive	
24 Meander Length/	Mean: 6.8	8.	Mean: 7.3	due to straightening activities	No distinctive repetitive
Bankfull Width (L _m /W _{bkf})	Range: 3.4-12.2	3.4-12.2	Range: 3.6-13.1		0

L ARGELL VARIOS	Mean: 3.8 Mean: 4.0	Range: 2.3-7.4 Range: 2.5-7.9	ngth/ Mean: 6.8 Mean: 7.3 Journal of milles and pools No distinctive repetitive	Range: 3.4-12.2 Range: 3.6-13.1	Mean: 2.2 Mean: 2.3 Mean: 2.1 due t	Range: 1.5-4.9 Range: 1.6-5.3 Range: 1.1-4.4 activities.	urvature/ Mean: 2.1 Mean: 2.2 No distinctive repetitive	dth (Pc/M) Banne: 0.0.10.5 Banne: 0.10.5 Banne: 0.10.5
	23 Pool to Pool Spacing/	Bankfuli Width (L _{p-p} /W _{bkf})	24 Meander Length/	Bankfull Width (L _m /W _{bkf})	25 Meander Width Ratio	(W _{belt} /W _{bkf})	26 Radius of Curvature/	Bankfull Width (Rc/White)

Profile Variables (Feet/Feet)

27 Average Water Surface				
Slope (S _{ave})	AZOOO	0.0029	0.0041	0.0212
28 Valley Slope (S _{valley})	0.0047	0.0047	0.0047	0.0220
29 Riffle Slope (Sriffle)	Mean: 0.0070	Mean: 0.0093	Mean: 0.0127	Mean: 0.0434
	Range: 0.0008 - 0.0167	Range: 0.0042 - 0.0144	Range: 0.0011 - 0.0614	Range: 0.0133 - 0.1062
30 Pool Stope (Spool)	Mean: 0.0004	Mean: 0.0003	Mean: 0.0005	Mean: 0.0039
	Range: 0.0000 - 0.0013	Range: 0.0000 - 0.0007	Range: 0.0000 - 0.0020	Range: 0 - 0.0360
		Profile Ratios		
31 Riffle Slope/ Water Surface	Mean: 2.4	Mean: 3.2	Mean: 3.1	Mean: 2.0
Slope (S _{riffle} /S _{ave})	Range: 0.28 - 5.8	Range: 1.45 - 4.96	Range: 0.27 - 15.0	Range: 0.6 - 4.8
32 Pool Slope/Water Surface	Mean: 0.06	Mean: 0.10	Mean: 0.12	Mean: 0.18
Slope (S _{pool} /S _{ave})	Range: 0 - 0.18	Range: 0 - 0.24	Range: 0 - 0.49	Range: 0 - 1.6
		Materials (Millimeters)		
D16	0.6	N/A	N/A	N/A
D35	4.7	2.9	7.6	N/A
D50	7.2	5	13.8	N/A
D84	17	10	39	N/A
D95	30	19	60	N/A

Variables	Dulla Exisiting Channel	ig Channel	UT to Dulla Ex	UT to Dulla Exisiting Channel
	Upstream Stream Reach	Downstream Reach	Upstream Stream Reach	Downstream Stream Reach
	(E)	(C)	(9)	(E)
Stream Type	Ш	С	С	
2 Drainage Area (mi ²)	0.12	0.14-0.25	0.11	0.12-0.13
3 Banktull Discharge (cfs)	19.3	21.5-32.7	18.1	19.3-20.4
	Din	Dimension Variables (Feet)		
4 Bankfull Cross Sectional	5.1	5.7-8.4	4.8	4.4-5.1
5 Bankfull Width (Whee)	Mean: 6.0	Mean: 14	Mean: 3.7	Mean' 53
	ц).	Range: 12.3-15.9		ч
6 Bankfuli Mean		Mean: 0.5		1
Depth (D _{bkf}) 7 Bookfeill Movimum	Range: 0.8-0.9	Range: 0.4-0.6	Range: NA	
Depth (D _{max})		0		Range: 1.2-1.9
8 Pool Width (W _{pool})	1	No distinctive repetitive	Mean:	1
	~	pattern of riffles and pools	Range:	
9 Maximum Pool		due to straightening activities	Mean:	
10 Width of Flondbrone	Mean' 44	Mean [.] 78	Mange, INA Mean' 5.8	Kange: NA Maan' 40
Area (W _{fpa})	Range: 38-50	с С		
		ž.		
11 Entrenchment Katio	Mean: 7.4		Mean: 1.6	Mean: 7.8 Dearge 6 6 0 4
(VV fpa/ VV bkf) 12 Width/Denth Ratio	Mean: 71	Maan' 30 1	Manue 28	Maan' 63
W _{bkf} /D _{bkf})				
13 Max. D _{ritt} /D _{bkf} Ratio	•			
	1			
14 Low Bank Height Max. Dhir Ratio	Mean: 1.1 Range: 1.0-1.1	Mean: 1.3 Range: 1.0-2.0	Mean: 1.9 Range: NA	Mean: 1.9 Range: 1.5-2.3
15 Pool Depth/Bankfull		1		
Mean Depth (D _{pool} /D _{bkf})	-	No distinctive repetitive	Range:	
16 Pool width/Bankfull		pattern of riffles and pools	Mean:	
VVIGITI (VV _{pool} /VV _{bkt}) 17 Pool Area/Bankfull	Mean: 0.8	activities	kange: NA Mean: NA	Kange: NA Mean: NA
Cross Sectional Area	Range: NA			
		Pattern Variables (Feet)		
18 Pool to Pool Spacing	No distinctive repetitive pattern		No distinctive repetitive	~
(L _{P-P}) 10 Moondor I onoth /I	of riffles and pools due to		pattern of riffles and pools	
a INEGRIACE LEUGUL (Lm/	straightening activities	No distinctive repetitive	due to straightening activities	iviean: 70 Range: 40-106
20 Belt Width (W _{belt})	Mean: 8	due to straighting activities	Mean:	2
	Range: 6-20		μ̈́	
21 Radius of Curvature (R _c)	No distinctive repetitive pattern of riffles and pools		No distinctive repetitive pattern of riffles and pools	Mean: 35 Range: 13-70
22 Sinuosity (Sin)	1.05	1.01	1.09	
2 Dool to Dool Canadaa/		Pattern Katios		
a Pool to Pool Spacing/ Bankfull Width (لـــَــ/Whit	No distinctive repetitive pattern		No distinctive repetitive	Mean: /./ Range: 4.3-11.9
24 Meander Length/	 of rifles and pools due to straightening activities 	No distinctive repetitive	pattern of riffles and pools due to straightening activities	1
Bankfull Width (L _m /W _{bkf})		pattern of riffles and pools		
25 Meander Width Ratio	Mean: 1.3 Ranne: 10-33	que to straigntening activities	Mean: 5.7 Pance: 4 0-5 0	Mean: 3.9 Banne: 1.0.7.7
26 Radius of Curvature/	1.9		lis	

TABLE 2B BISHOP STREAM RESTORATION SITE

	Pro	Profile Variables (Feet/Feet)		
27 Average Water Surface Slope (S _{ave})	0.0228	0.0019	Not Measured	Not Measured
28 Valley Slope (S _{valley})	0.0239	0.0019	Not Measured	Not Measured
29 Riffle Slope (S _{riffe})	Mean: 0.0360 Range: 0.0036 - 0.0960	No distinctive repetitive	Mean: N/A Range: N/A	Mean: N/A Range: N/A
30 Pool Slope (S _{pool})	Mean: 0.0031 Range: 0.0000 - 0.0161	due to straighting activities	Mean: N/A Range: N/A	Mean: N/A Range: N/A
		Profile Ratios		
31 Riffle Stope/ Water Surface	Mean: 1.6	No distinctivo ronotitivo	Mean: N/A	Mean: N/A
Slope (Sriffie/Save)	Range: 0.16 - 4.2	no usurcuve repetitive	Range: N/A	Range: N/A
32 Pool Slope/Water Surface	Mean: 0.13	due to straighting activities	٩	Mean: N/A
Slope (S _{pool} /S _{ave})	Range: 0 - 0.71		Range: N/A	Range: N/A
	~	materiais (millimeters)		
D16	N/A	N/A	Not Measured	Not Measured
D35	N/A	N/A	Not Measured	Not Measured
D50	N/A	N/A	Not Measured	Not Measured
D84	6	N/A	Not Measured	Not Measured
D95	15	N/A	Not Measured	Not Measured

TABLE 3 BISHOP STREAM RESTORATION SITE Morphological Characteristics of Reference Channels

editarioteane substances. enormationaria includio enormationaria de contractaria. Anordo enormationaria de contractaria UT to Reedy Creek

Reference Camp Branch

UT to Crane Creek

	(E4/5)	(E4)	(E5/4)
1 Stream Type	Ш	ш	ш
2 Drainage Area (mi²)	1.5	2.4	0.4
3 Bankfull Discharge (cfs)	119	168	44
	Dimension V	Dimension Variables (Feet)	
4 Bankfull Cross Sectional Area (A _{bkt})	20.5	38.7	15.5
5 Bankfull Width (W _{bkf})	Mean: 10.1	Mean: 19.6	Mean: 10.4
	Range: 9.5 - 11.9	Range: 16.5-21.3	Range: 9.6 - 11.2
6 Bankfull Mean	Mean: 2.0	Mean: 2.0	Mean: 1.4
Depth (D _{bkf})	Range: 1.9 - 2.1	Range: 1.8-2.2	Range: 1.2 - 1.6
7 Bankfull Maximum	Mean: 2.6	Mean: 2.6	Mean: 2.2
Depth (D _{max)}	Range: 2.5 - 2.9	Range: 2.4-2.7	Range: 1.8 - 2.2
8 Pool Width (W _{pool})	Mean: 11.1	Mean: 23.6	Mean: 14.2
	Range: 10.5 - 11.7	Range: NA	Range: 13.7 - 14.7
9 Maximum Pool	Mean: 2.9	Mean: 4.3	Mean: 2.3
Depth (D _{pool})	Range: 2.8 - 3.0	Range: NA	Range: 2.2 - 2.3
10 Width of Floodprone	Mean: 237	Mean: 110	Mean: 58
Area (W _{fpa})	Range: 232 - 345	Range: 75-180	Range: 42 - 71

and a that	Malige. 232 - 343	Range: / ၁-180	Kange: 42 - /1
	Dimensi	Dimension Ratios	
11 Entrenchment Ratio	Mean: 25.0	Mean: 6.6	Mean: 5.6
(Wfpa/Wbkf)	Range: 20 - 34.5	Range: 3.8-8.5	Range: 3.7 - 7.4
12 Width/Depth Ratio	Mean: 5.1	Mean: 9.9	Mean: 7.8
W _{bkf} /D _{bkf})	Range: 4.5 - 5.7	Range: 7.5-11.8	Range: 6.4 - 8.1
13 Max. D/D Ratio	Mean: 1.3	Mean: 1.2	Mean: 1.5
	Range: 1.2 - 1.4	Range: 1.2-1.5	Range: 1.4 - 1.6
14 Low Bank Height/	Mean: 1.2	Mean: 1.2	Mean: 1.0
Max. D _{bkf} Ratio	Range: 1.1 - 1.2	Range: 1.0-1.3	Range: 1.0-1.2
15 Pool Depth/Bankfull	Mean: 1.5	Mean: 2.2	Mean: 1.6
Mean Depth (D _{pool} /D _{bkf})	Range: 1.4 - 1.5	Range: NA	Range: NA
16 Pool width/Bankfull	Mean: 1.1	n e de la constante de la constante en un proprio de la constante en un de la constante de la constante de la c	Mean: 1.4
Width (W _{pool} /W _{bkf})	Range: 1.0 - 1.2	Range: NA	Range: 1.3 - 1.4
17 Pool Area/Bankfull	Mean: 1.0	Mean: 1.4	Mean: 1.2
Cross Sectional Area	Range: NA	Range: NA	Range: 1.1 - 1.2
	Pattern Vari	Pattern Variables (Feet)	
18 Pool to Pool Spacing	Mean: 53	Mean: 74	Mean: 84

		Pattern	Pattern Variables (Feet)	ieet)		
18 Pool to Pool Spacing	Mean: 53	53	Mean: 74	74	Mean: 84	84
(L _{P-P})	Range:	Range: 26 - 114	Range:	Range: 45-145	Range:	Range: 13 - 112
19 Meander Length (L _m)	Mean: 73	73	Mean: 133	133	Mean: 102	102
	Range:	Range: 61 - 115	Range:	Range: 66-240	Range:	Range: 81 - 137
20 Belt Width (W _{belt})	Mean: 86	86	Mean:	43	Mean: 76	76
	Range:	Range: 74 - 101	Range: 30-97	30-97	Range:	Range: 68 - 84
21 Radius of Curvature (R _c)	Mean: 25.3	25.3	Mean: 41	41	Mean: 27.6	27.6
	Range:	Range: 18.6 - 30.4	Range:	Range: 17-200	Range:	Range: 17.1 - 42
22 Sinuosity (Sin)		1.8		1.18		1.55
		, P	Pattern Ratios			
23 Pool to Pool Spacing/	Mean: 5.2	5.2	Mean: 3.8	3.8	Mean 81	R 1

		Pattern	Pattern Ratios			
23 Pool to Pool Spacing/	Mean: 5.2	5.2	Mean: 3.8	3.8	Mean: 8.1	8.1
Bankfull Width (L _{P-P} /W _{bkf})	Range:	Range: 2.6 - 11.3	Range:	Range: 2.3-7.4	Range:	Range: 1.3 - 10.8
24 Meander Length/	Mean: 7.2	7.2	Mean: 6.8	6.8	Mean: 9.8	9.8
Bankfull Width (L _m /W _{bkf})	Range:	Range: 6.0 - 11.4	Range:	Range: 3.4-12.2	Range:	Range: 7.8 - 13.2
25 Meander Width Ratio	Mean: 8.5	8.5	Mean: 2.2	2.2	Mean: 7.3	7.3
(W _{belt} /W _{bkf})	Range:	Range: 7.4 - 10.0	Range:	Range: 1.5-4.9	Range:	Range: 6.5 - 8.1
26 Radius of Curvature/	Mean: 2.5	2.5	Mean: 2.1	2.1	Mean: 2.7	2.7
Bankfull Width (Rc/W _{bkf})	Range:	Range: 1.8 - 3.0	Range:	Range: 0.9-10.2	Range:	Range: 1.6 - 4.0

	Profile Variab	Profile Variables (Feet/Feet)	
27 Average Water Surface Slope (S _{ave})	0.0014	0.0029	0.0111
28 Valley Slope (S _{valley})	0.0025	0.0047	0.0172
29 Riffle Slope (S _{riffle})	Mean: 0.0019	Mean: 0.0070	Mean: 0.014
	Range: 0.0006 - 0.0033	Range: 0.0008 - 0.0167	Range: 0.0105 - 0.0221
30 Pool Slope (Spool)	Mean: 0.0004	Mean: 0.0004	Mean: 0.0069
	Range: 0.0000 - 0.0006	Range: 0.0000 - 0.0013	Range: 0.0016 - 0.0182
	Profile	Profile Ratios	
31 Riffle Slope/ Water Surface	Mean: 1.4	Mean: 2.4	Mean: 1.3
Slope (Sriffie/Save)	Range: 0.4 - 2.4	Range: 0.28 - 5.8	Range: 0.9 - 2.0
32 Pool Slope/Water Surface	Mean: 0.3	Mean: 0.06	Mean: 0.6
Slope (S _{pool} /S _{ave})	Range: 0 - 0.4	Range: 0 - 0.18	Range: 0.1 - 1.6
	Materials (I	Materials (Millimeters)	
D16	N/A	0.6	0.092
D35	0.44	4.7	0.29
D50	1.9	7.2	0.5
D84	12	17	12
D95	36	30	85

		UT		
Channels	Proposed	Camp Branch (Reach 3)	(C/E)	C/E
A ORATION SITE ence and Proposed C		Camp Branch (Reach 1 and 2)	(C/E)	C/E
TABLE 6A BISHOP STREAM RESTORATION SITE Morphological Characteristics of Reference and Proposed Channels	Reference	Camp Branch	(E)	ш
Morphological	Ref	I to Crane Creek	(E4/5)	Ш

UT Camp Branch

UT to Crane Creek

Variables

					and 2)				
		(E4/5)		(E)	(C/E)		(C/E)	(C/E)	
1 Stream Type		ш		ш	C/E		C/E	C/E	
2 Drainage Area (mi ²)		1.5		2.4	2.4		2.7	0.3	
3 Bankfull Discharge (cfs)		119		168	168		182	37.3	
						فرد د معامد م			
			Δ	Dimension Variables (Feet)	ss (Feet)				_
4 Bankfull Cross Sectional Area (A _{bkl})		20.5		38.7	38.7		42	9.4	
5 Bankfull Width (W _{bkf})	Mean:	10.1	Mean: 19.6	.6	Mean: 21.5	2	Mean: 22.4	Mean: 10.6	
	Range:	Range: 9.5 - 11.9	Range: 16.5-21.3	5-21.3	Range: 17.6 - 24.9	LL.	Range: 18.3 - 25.9	Range: 8.7 - 12.3	
6 Bankfull Mean	Mean: 2.0	2.0	Mean: 2.0	0	Mean: 1.8	2	Mean: 1.9	Mean: 0.9	
Depth (D _{bk/})	Range: 1.9 - 2.1	1.9 - 2.1	Range: 1.8-2.2	-2.2	Range: 1.6 - 2.2	<u></u>	tange: 1.6 - 2.3	Range: 0.8 - 1.1	
7 Bankfull Maximum	Mean: 2.6	2.6	Mean: 2.6	6	Mean: 2.3	2	Mean: 2.5	Mean: 1.4	
Depth (D _{max)}	Range:	Range: 2.5 - 2.9	Range: 2.4-2.7	-2.7	Range: 2.2 - 2.7	<u> </u>	Range: 2.3 - 2.9	Range: 1.3 - 1.7	
8 Pool Width (W _{pool})	Mean: 11.1	11.1	Mean: 23.6	.6	Mean: 28	2	Mean: 29.1	Mean: 15.9	
	Range: 1	Range: 10.5 - 11.7	Range: NA	A	Range: 23.7 - 32.3		Range: 24.6 - 33.6	Range: 13.8 - 17.0	
9 Maximum Pool	Mean: 2.9		Mean: 4.3	~	Mean: 3.2	2	Mean: 3.4	Mean: 1.6	
Depth (D _{pool})	Range: 2.8 - 3.0	2.8 - 3.0	Range: NA	A	Range: 2.5 - 4.0	<u>u</u>	Range: 2.7 - 4.2	Range: 1.3 - 2.0	_
odprone	Mean:	237	Mean: 110		Mean: 110	2	Mean: 184	Mean: 90	_
Area (W _{fpa})	Range:	Range: 232 - 345	Range: 75-180	180	Range: 75 - 180	Ľ	Range: 165 - 217	Range: 30 - 110	_

				Dimension Ratios	tios			
11 Entrenchment Ratio	Mean: 25.0	25.0	Mean: 6.6	6.6	Mean: 5.1	5.1	Mean: 8.2	Mean: 8.3
(Wfpa/Wbkf)	Range:	Range: 20 - 34.5	Range:	Range: 3.8-8.5	Range:	Range: 4.4 - 6.3	Range: 7.4 - 9.7	Range: 7.3 - 10.3
12 Width/Depth Ratio	Mean: 5.1	5.1	Mean: 9.9	9.9	Mean: 12	12	Mean: 12	Mean: 12
W _{bkf} /D _{bkf})	Range:	Range: 4.5 - 5.7	Range:	Range: 7.5-11.8	Range: 8 - 16	8 - 16	Range: 8 - 16	Range: 8 - 16
13 Max. D/D Ratio	Mean: 1.3	1.3	Mean: 1.2	1.2	Mean: 1.3	1.3	Mean: 1.3	Mean: 1.5
	Range:	Range: 1.2 - 1.4	Range:	Range: 1.2-1.5	Range:	Range: 1.2 - 1.5	Range: 1.2 - 1.5	Range: 1.4 - 1.7
14 Low Bank Height/	Mean:	1.2	Mean:	1.2	Mean:	1.2	Mean: 1.2	Mean: 1.1
Max. D _{bkf} Ratio	Range:	Range: 1.1 - 1.2	Range:	Range: 1.0-1.3	Range:	Range: 1.0 - 1.3	Range: 1.0 - 1.3	Range: 1.0 - 1.3
15 Pool Depth/Bankfull	Mean: 1.5	1.5	Mean: 2.2	2.2	Mean: 1.8	1.8	Mean: 1.8	Mean: 1.8
Mean Depth (D _{pool} /D _{bkf})	Range:	Range: 1.4 - 1.5	Range: NA	NA	Range:	Range: 1.4 - 2.2	Range: 1.4 - 2.2	Range: 1.4 - 2.2
16 Pool width/Bankfull	Mean:	Mean: 1.1	Mean: 1.2	1.2	Mean: 1.3	1.3	Mean: 1.3	Mean: 1.5
Width (W _{pool} /W _{bkf})	Range:	Range: 1.0 - 1.2	Range:	NA	Range:	Range: 1.1 - 1.5	Range: 1.1 - 1.5	Range: 1.3 - 1.6
17 Pool Area/Bankfull	Mean: 1.0	1.0	Mean:	1.4	Mean:	1.4	Mean: 1.4	Mean: 1.5
Cross Sectional Area	Range:		Range: NA	NA	Range:	Range: 1.1 - 1.6	Range: 1.1 - 1.6	Range: 1.1 - 1.6
					Statistics of the second			

				Pattern Variables (Feet)	(Feet)				
18 Pool to Pool Spacing	Mean:	53	Mean: 74		Mean:	95.8	Mean: 100	100	Mean: 42.4
(L _{P-P})	Range:	Range: 26 - 114	Range:	Range: 45-145	Range:	63.9 - 213	Range:	Range: 67.2 - 224	Range: 15.9 - 95.4
19 Meander Length (L _m)	Mean: 73	73	Mean:	133	Mean:	150	Mean:	157	Mean: 63.6
	Range:	Range: 61 - 115	Range:	66-240	Range:	128 - 256	Range:	Range: 134 - 269	Range: 25.4 - 116.6
20 Belt Width (W _{belt})	Mean:	86	Mean: 43		Mean:	85.2	Mean:	89.6	Mean: 42.4
	Range:	Range: 74 - 101	Range:	30-97	Range:	42.6 - 213	Range:	Range: 44.8 - 224	Range: 21.2 - 74.2
21 Radius of Curvature (R_{c})	Mean: 25.3	25.3	Mean: 41		Mean:	46.9	Mean:	49.3	Mean: 23.3
	Range:	Range: 18.6 - 30.4	Range: 17-200		Range:	42.6 - 213	Range:	44.8 - 224	Range: 21.2 - 42.4
22 Sinuosity (Sin)		1.8		1.18		1.29		1.12	1.10

				Pattern Ratios	SC				
23 Pool to Pool Spacing/	Mean: 5.2	5.2	Mean: 3.8	3.8	Mean: 4.5	4.5	Mean: 4.5	1.5	Mean: 4.0
Bankfull Width (L _{P-P} /W _{bkf})	Range:	Range: 2.6 - 11.3	Range:	Range: 2.3-7.4	Range: 3 - 10	3 - 10	Range: 3 - 10		Range: 1.5 - 9
24 Meander Length/	Mean:	7.2	Mean: 6.8	6.8	Mean:	7	Mean:	7	Mean: 6
Bankfull Width (L _m /W _{bkf})	Range:	Range: 6.0 - 11.4	Range:	3.4-12.2	Range: 6 - 12	6 - 12	Range:	6 - 12	Range: 2.4 - 11
25 Meander Width Ratio	Mean:	8.5	Mean: 2.2	2.2	Mean:	4	Mean:	4	Mean: 4
(W _{belt} /W _{bkf})	Range:	Range: 7.4 - 10.0	Range:	Range: 1.5-4.9	Range: 2 - 10	2 - 10	Range: 2 - 10	2 - 10	Range: 2 - 7
26 Radius of Curvature/	Mean: 2.5	2.5	Mean: 2.1	2.1	Mean:	2.2	Mean:	2.2	Mean: 2.2
Bankfull Width (Rc/W _{bkf})	Range:	Range: 1.8 - 3.0	Range:	0.9-10.2	Range: 2 - 10	2 - 10	Range: 2 - 10	2 - 10	Range: 2.0 - 4

		Profile Variables (Feet/Feet)	:eet/Feet)		
27 Average Water Surface Slope (S _{ave})	0.0014	0.0029	0.0031	0.0031	0.0110
28 Valley Slope (S _{valley})	0.0025	0.0047	0.0047	0.0047	0.0131
29 Riffle Slope (S _{riffe})	Mean: 0.0019 Range: 0.0006 - 0.0033	Mean: 0.0070 Range: 0.0008 - 0.0167	Mean: 0.005 Rance: 0.0012 - 0.0068	Mean: 0.005 Rande: 0.0012 - 0.0068	Mean: 0.017 Renne: 0.0044 - 0.0242
30 Pool Slope (Spool)	Mean: 0.0004	Mean: 0.0004	Mean: 0.0012	Mean: 0.0012	Mean: 0.0044
	Range: 0.0000 - 0.0006	Range: 0.0000 - 0.0013	Range: 0 - 0.0019	Range: 0 - 0.0019	Range: 0 - 0.0066
		Profile Ratios	SC		
31 Riffle Slope/ Water Surface	Mean: 1.4	Mean: 2.4	Mean: 1.6	Mean: 1.6	Mean: 1.6
Slope (S _{riffie} /S _{ave})	Range: 0.4 - 2.4	Range: 0.28 - 5.8	Range: 0.4 - 2.2	Range: 0.4 - 2.2	Range: 0.4 - 2.2
32 Pool Slope/Water Surface	Mean: 0.3	Mean: 0.06	Mean: 0.4	Mean: 0.4	Mean; 0.4
Slope (S _{pool} /S _{ave})	Range: 0 - 0.4	Range: 0 - 0.18	Range: 0 - 0.6	Range: 0 - 0.6	Range: 0 - 0.6
		Materials (Millimeters)	ıeters)		
D16	N/A	0.6	NA	NA	NA
D35	0,44	4.7	NA	NA	NA
D50	1.9	7.2	1.5 - 16	1.5 - 16	0.125 - 2.0
D84	12	17	NA	NA	NA
D95	36	30	NA	NA	NA

Variables	Reference		Proposed	
	UT to Reedy Creek	Dula Thoroughfare	Dula Thoroughfare	UT Dula Thoroughfare
	(E5/4)	(E/C 5/6)	(D/6)	(E/C 4/5)
1 Stream Type	ш	E/C	Ω	E/C
2 Drainage Area (mi ²)	0.4	0.16	0.18	0.11
3 Bankfull Discharge (cfs)	44	23	25	18.1

Sectional 15.5 6.2 6.4 h (W _{bkl}) Mean: 10.4 Mean: 8.6 6.4 n Mean: 10.4 Mean: 8.6 6.4 n Mean: 10.4 Mean: 8.6 6.4 n Mean: 1.12 Range: 7 - 10 6.4 n Mean: 1.4 Mean: 0.7 Mean: 0.7 Num Mean: 1.2 - 1.6 Range: 0.6 - 0.9 Mean: 1.0 mum Mean: 2.2 Mean: 1.0 8raided Channel System V _{pool}) Mean: 14.2 Mean: 12.0 8raided Channel System V _{pool}) Mean: 2.3 Mean: 12.0 8raided Channel System V _{pool}) Mean: 2.3 Mean: 12.0 8raided Channel System V _{pool}) Mean: 2.3 Mean: 1.1 Braided Channel System V _{pool}) Mean: 2.3 Mean: 1.0 8raided Channel System V _{pool}) Mean: 2.3 Mean: 1.1 8raided Channel System V _{pool} Mean: 2.3 Mean: 1.0 9.1 Odprone Mean: 58 Mean: 57.00 9.1 <		Dì	Dimension Variables (Feet)		
Mean: 10.4 Mean: 8.6 Range: 9.6 - 11.2 Range: 7 - 10 Range: 1.4 Range: 7 - 10 Mean: 1.4 Mean: 0.7 Range: 1.2 - 1.6 Range: 0.6 - 0.9 Mean: 2.2 Range: 0.6 - 0.9 Mean: 2.2 Range: 0.8 - 1.1 Range: 1.8 - 2.2 Range: 0.8 - 1.1 Mean: 1.4.2 Mean: 1.0 Mean: 14.2 Range: 0.8 - 1.1 Mean: 1.1.0 Range: 0.8 - 1.1 Mean: 1.2.0 Mean: 1.2.9 Mean: 2.3 Mean: 1.1 Range: 1.2.12.9 Mean: 1.1 Range: 2.2 - 2.3 Range: 1.0 - 1.2 Range: 2.2 - 2.3 Range: 1.0 - 1.2 Range: 2.2 - 2.3 Mean: 61	4 Bankfull Cross Sectional Area (A _{bkf})	15.5	6.2	6.4	4.7
Mean: 1.4 Mean: 0.7 Range: 1.2 - 1.6 Range: 0.6 - 0.9 Range: 1.2 - 1.6 Range: 0.6 - 0.9 Mean: 2.2 Range: 0.6 - 1.0 Mean: 2.2 Range: 0.8 - 1.1 Braided Channel System Mean: 14.2 Mean: 12.0 Range: 0.8 - 1.1 Mean: 14.2 Range: 0.1 - 1.2 Range: 12.9 Mean: 2.3 Mean: 12.0 Range: 10.3 - 12.9 Mean: 2.3 Mean: 1.1 Rande: 1.0 - 1.2 Mean: 2.3 Mean: 1.0 - 1.2 Rande: 1.0 - 1.2 Mean: 58 Mean: 61 0.0 - 1.2 0.0		Mean: 10.4 Bande: 0.6_11.2	Mean: 8.6 Banne: 7_10		Mean: 7.5
Range: 1.2 - 1.6 Range: 0.6 - 0.9 Mean: 2.2 Mean: 1.0 Range: 1.8 - 2.2 Range: 0.8 - 1.1 Range: 1.8 - 2.2 Range: 0.8 - 1.1 Mean: 14.2 Mean: 12.0 Mean: 14.2 Mean: 12.0 Mean: 2.3 Mean: 12.0 Mean: 2.3 Mean: 1.1 Mean: 2.3 Mean: 1.1 Mean: 2.3 Mean: 1.0 - 1.2 Dre Mean: 58 Mean: 61		Mean: 1.4	Mean: 0.7		Manuge: 0.1 - 0.7 Mean: 0.6
Mean: 2.2 Mean: 1.0 Range: 1.8 - 2.2 Range: 0.8 - 1.1 Braided Channel System Mean: 14.2 Mean: 12.0 Mean: 12.0 Range: 13.7 - 14.7 Range: 10.3 - 12.9 Mean: 2.3 Mean: 2.3 Mean: 1.1 Range: 1.0 - 1.2 Mean: 2.3 Mean: 1.1 Range: 1.0 - 1.2 Ine Mean: 58 Mean: 61 Range: 1.0 - 1.2		Range: 1.2 - 1.6	Range: 0.6 - 0.9		Range: 0.5 - 0.8
Range: 1.8 - 2.2 Range: 0.8 - 1.1 Braided Channel System Mean: 14.2 Mean: 12.0 Braided Channel System Range: 13.7 - 14.7 Range: 10.3 - 12.9 Mean: 1.1 Mean: 2.3 Mean: 1.1 Mean: 2.3 Mean: 1.1 Range: 2.3 Reane: 1.1 Mean: 1.1 Mean: 1.1 Range: 2.2 - 2.3 Range: 1.0 - 1.2 Mean: 61 Mean: 61		Mean: 2.2	Mean: 1.0		Mean: 0.8
Mean: 14.2 Mean: 12.0 Dradded Channel System Range: 13.7 - 14.7 Range: 10.3 - 12.9 Mean: 2.3 Mean: 2.3 Mean: 1.1 Range: 1.1 Range: 2.2 - 2.3 Range: 1.0 - 1.2 Mean: 58 And Mean: 61 Mean: 61 Mean: 42 - 71		Range: 1.8 - 2.2	Range: 0.8 - 1.1	Desided Change of the	Range: 0.7 - 1.0
Range: 13.7 - 14.7 Range: 10.3 - 12.9 Mean: 2.3 Mean: 1.1 Range: 2.2 - 2.3 Range: 1.0 - 1.2 Mean: 58 Mean: 61 Range: 42 - 71 Range: 35 - 00		Mean: 14.2	Mean: 12.0		Mean: 10.5
Mean: 2.3 Mean: 1.1 Range: 2.2 - 2.3 Range: 1.0 - 1.2 Mean: 58 Mean: 61 Range: 42 - 71 Range: 35 - 00		Range: 13.7 - 14.7	Range: 10.3 - 12.9		Range: 10 - 12
Range: 2.2 - 2.3 Range: 1.0 - 1.2 Mean: 58 Mean: 61 Range: 42 - 71 Range: 35 - 00		Mean: 2.3	Mean: 1.1		Mean: 0.9
Mean: 58 Mean: 61 Ranne: 42 - 71 Ranne: 35 - 00		Range: 2.2 - 2.3	Range: 1.0 - 1.2		Range: 0.8 - 1.0
Ranne: 42 - 71 Renne: 35 - 00		Mean: 58	Mean: 61		Mean: 62
1/41/36: 47 - 1 1 1/41/36: 00 - 30	Area (W _{fpa})	Range: 42 - 71	Range: 35 - 90		Range: 45 - 85

		Dimension Ratios		
11 Entrenchment Ratio	Mean: 5.6	Mean: 7.1		Mean: 8.3
(W _{fpa} /W _{bkf})	Range: 3.7 - 7.4	Range: 4.1 - 10.5		Range: 6 - 11.3
12 Width/Depth Ratio	Mean: 7.8	Mean: 12		Mean: 12
W _{bkf} /D _{bkf})	Range: 6.4 - 8.1	Range: 8 - 16		Range: 8 - 10
13 Max. D/D Ratio	Mean: 1.5	Mean: 1.4		Mean: 1.4
	Range: 1.4 - 1.6	Range: 1.2 - 1.6		Range: 1.2 - 1.6
14 Low Bank Height/	Mean: 1.0	Mean: 1.1	Braided Channel System	Mean: 1.1
Max. D _{bkf} Ratio	Range: 1.0-1.2	Range: 1.0 - 1.3		Range: 1,0 - 1.3
15 Pool Depth/Bankfull	Mean: 1.6	Mean: 1.5		Mean: 1.5
Mean Depth (D _{pool} /D _{bkf})	Range:	Range: 1.4 - 1.6		Range: 1.4 - 1.6
16 Pool width/Bankfull	Mean: 1.4	Mean: 1.4		Mean: 1.4
Width (W _{pool} /W _{bkf})	Range: 1.3 - 1.4	Range: 1.2 - 1.5		Range: 1.3 - 1.6
17 Pool Area/Bankfull	Mean: 1.2	Mean: 1.2		Mean: 1.4
Cross Sectional Area	Range: 1.1 - 1.2	Range: 1.1 - 1.4		Range: 1.3 - 1.6

		d.	Pattern Variables (Feet)		
18 Pool to Pool Spacing	Mean: 84	84	Mean: 43.9		Mean: 37.5
(L _{P-P})	Range:	Range: 13 - 112	Range: 22.4 - 68.8		Range: 15 - 60
19 Meander Length (L _m)	Mean:	102	Mean: 68.8		Mean: 52.5
	Range:	Range: 81 - 137	Range: 51.6 - 94.6	Braided Channel Svetem	Range: 22.5 - 82.5
20 Belt Width (W _{belt})	Mean: 76	76	Mean: 60.2		Mean: 22.5
	Range:	Range: 68 - 84	Range: 55.9 - 86		Range: 12.8 - 37.5
21 Radius of Curvature (R_{c})	Mean: 27.6	27.6	Mean: 18.9		Mean: 16.5
	Range:	Range: 17.1 - 42	Range: 17.2 - 34.3		Range: 15 - 33.8
22 Sinuosity (Sin)		1.55	1.16	-	1.17

27 Average Water Surface Slope (S _{ave})	0.0111	0.0070	0.0019	At Grade
28 Valley Slope (S _{valley})	0.0172	0.0044	0.0019	At Grade
29 Riffle Slope (S _{riffle})	Mean: 0.014 Range: 0.0105 - 0.0221	Mean: 0.0098 Range: 0.007 - 0.0154		Mean: NA Range: NA
30 Pool Slope (Spool)	Mean: 0.0069 Range: 0.0016 - 0.0182	Mean: 0.0028 Range: 0 - 0.0014	braided Channel System	Mean: NA Range: NA
		Profile Ratios		
31 Riffle Slope/ Water Surface	Mean: 1.3	Mean: 1.4		Mean: NA
Slope (S _{riffie} /S _{ave})	Range: 0.9 - 2.0	Range: 1.0 - 2.2	Broidod Choosed Protom	Range: NA
32 Pool Slope/Water Surface	Mean: 0.6	Mean: 0.4		Mean: NA
Slope (S _{pool} /S _{ave})	Range: 0.1 - 1.6	Range: 0 - 0.2		Range: NA
		Materials (Millimeters)		
D16	0.092	NA	NA	NA
D35	0.29	NA	NA	AA
D50	0.5	0.125 - 2.0	0.125 - 2.0	0.25 - 4.0
D84	12	NA	NA	NA
D95	85	NA	NA	NA

Table 4A

dout the source of the source

Reference Forest Plot Summary Bottomland Hardwood Forest (Canopy Species) UT to Crane Creek Floodplain

Tree Species	Number of Individuals ¹	Relative Density (%)	Frequency ¹ (%)	Relative Frequency (%)	Basal Area (ft² / acre)	Relative Basal Area (%)	Importance Value
Acer negundo	က	7.9	67	8.7	2.3	5.9	0.07
Acer rubrum	က	7.9	67	8.7	4.2	10.6	0.09
Carya ovata	S	13.2	67	8.7	2.5	6.3	0.09
Cary tomentosa	-	2.6	33	4.3	0.1	0.2	0.02
Fagus grandiflora		2.6	33	4.3	2.0	5.2	0.04
Fraxinus americana		2.6	33	4.3	1.3	3.3	0.03
Fraxinus pennsylvanica	9	15.8	100	13.0	3.5	8.8	0.13
Juniperus virginica		2.6	33	4.3	0.4	0.9	0.03
Liquidambar styraciflua		. 2.6	33	4.3	0.1	0.3	0.02
Liriodendron tulipifera	ო	7.9	67	8.7	2.7	6.7	0.08
Nyssa sylvatica		2.6	33	4.3	0.1	0.2	0.02
Quercus falcata	*	2.6	33	4.3	2.9	7.3	0.05
Quercus michauxii	ი	7.9	67	8.7	13.3	33.6	0.17
Quercus phellos	0	5.3	33	4.3	2.3	5.8	0.05
Ulmus americana	9	15.8	67	8.7	1.9	4.9	0.10
TOTALS	38	100	767	100	40	100	F

¹ Summary of three 0.1-acre plots

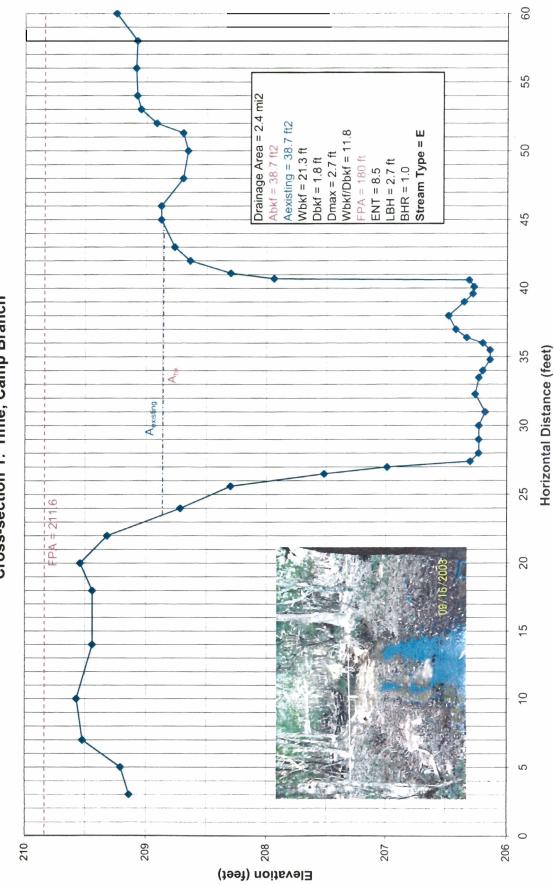
Table 4B

April 2017 Anna 2017 Anna 2017 Anna 2017 Martin Anna 2017 Reference Forest Plot Summary Bottomland Hardwood Forest (Canopy Species) UT to Reedy Creek Floodplain

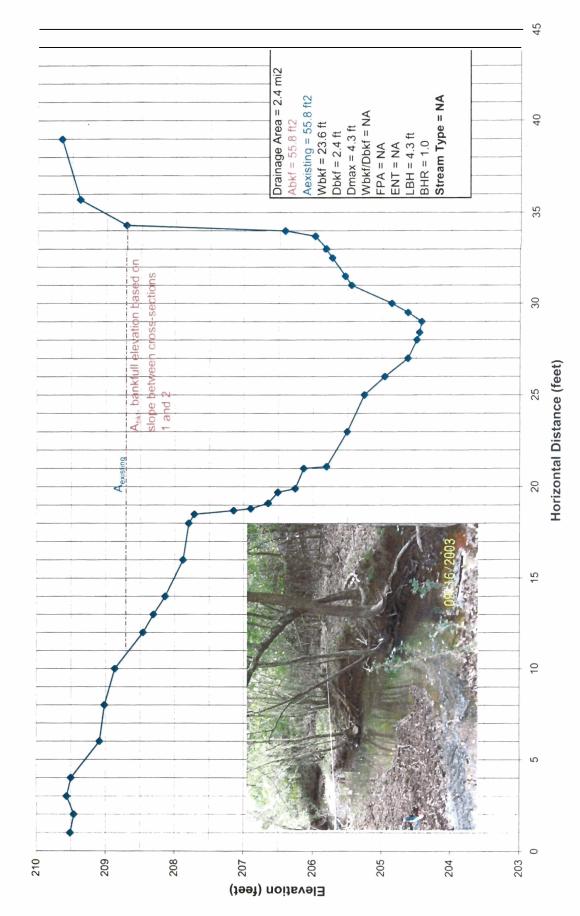
Tree Species	Number of Individuals ¹	Relative Density (%)	Frequency ¹ (%)	Relative Frequency (%)	Basal Area (ft² / acre)	Relative Basal Area (%)	Importance Value
Acer negundo	9	7.8	50	5.3	1.9	2.6	0.05
Acer rubrum	Q	2.6	50	5.3	0.6	0.8	0.03
Carpinus caroliniana	7	9.1	50	5.3	1.2	1.7	0.05
Carya ovata	N	2.6	50	5.3	5.4	7.3	0.05
Celtis laevigata	Q	7.8	50	5.3	3.1	4.2	0.06
Fagus grandiflora	CI	2.6	50	5.3	6.5	8.8	0.06
Fraxinus pennsylvanica	-	1.3	25	2.6	0.4	0.5	0.01
Juglans nigra	4	5.2	75	7.9	5.2	7.0	0.07
Liquidambar styraciflua	7	9.1	75	7.9	6.6	8.9	0.09
Liriodendron tulipifera	S	6.5	75	7.9	15.9	21.5	0.12
Morus rubra	ω	10.4	75	7.9	4.0	5.4	0.08
Nyssa sylvatica	ო	3.9	75	7.9	3.0	4.0	0.05
Platanus occidentalis	CI	2.6	25	2.6	6.5	8.8	0.05
Quercus alba	N	2.6	25	2.6	1.7	2.2	0.02
Quercus michauxii		1.3	25	2.6	0.5	0.7	0.02
Quercus phellos		1.3	25	2.6	1.6	2.2	0.02
Quercus rubra	7	9.1	50	5.3	7.2	9.8	0.08
Ulmus americana	11	14.3	100	10.5	3.0	4.0	0.10
TOTALS	27	100	950	100	74	100	~

¹ Summary of four 0.1-acre plots

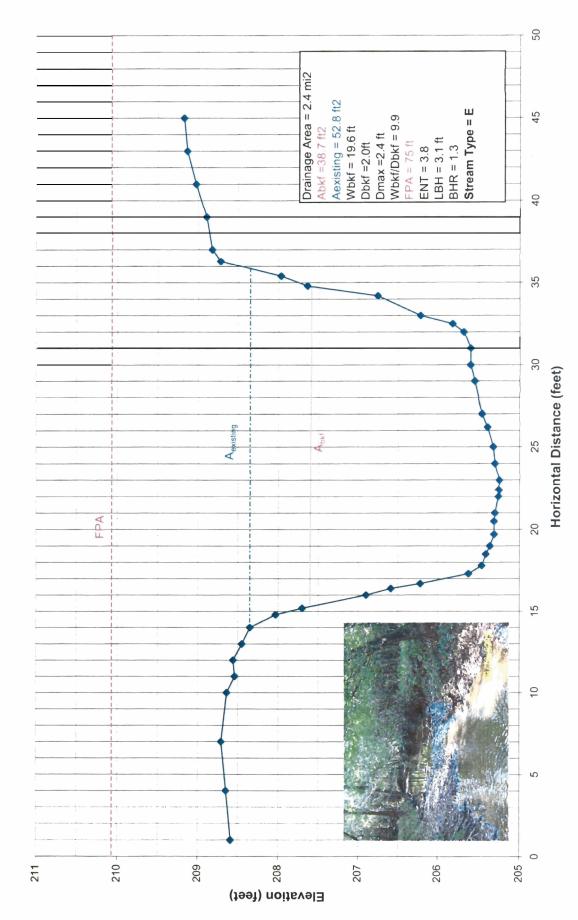
APPENDIX C


EXISTING STREAM DATA

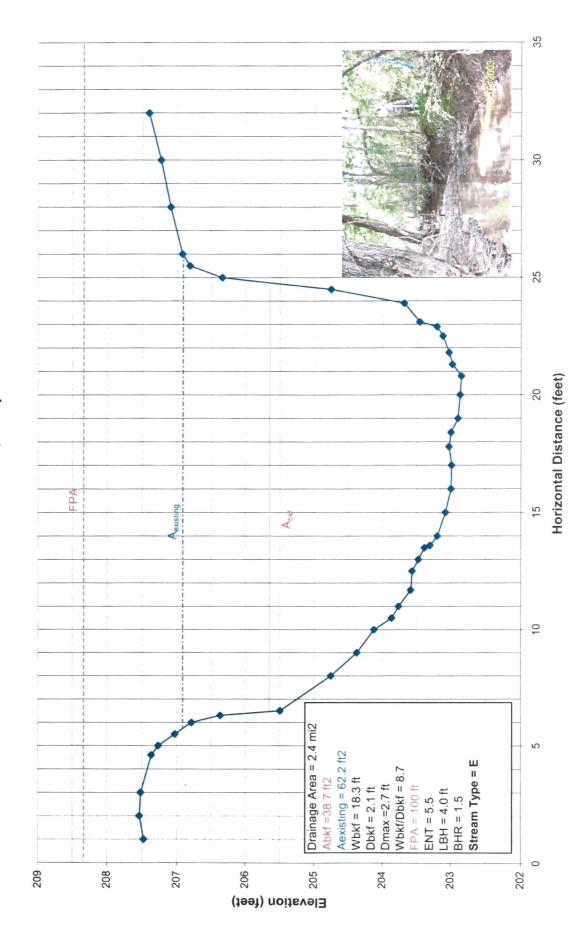
gezene e seren en Se Bistrasseretezetetete the second se


politik por ostrak telep Na tara telepenete Na tara telepenete

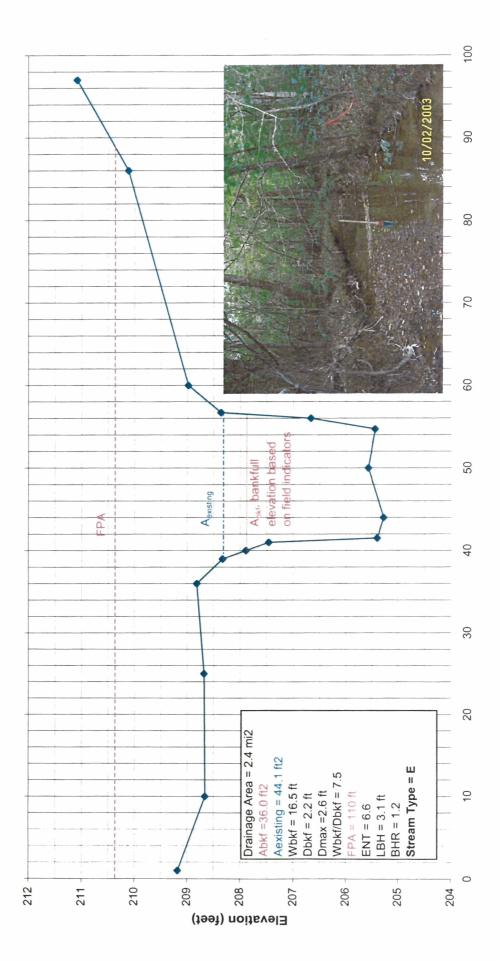
ea
Ā
Ë
ŭ
Brai
d
Camp
ü
sic
nension
<u> </u>
Site
ų L
0
Ę
opert
Pro
0
shop
is
ш


s-X	X-sect D	DA (mi ²)	A _{bkf} (ft ⁴)	A _{existing} (ft ²)	W _{bkf} (ft)	Dave (ft)	U _{max} (ft)	W/D Ratio	FPA	Entrench	LBH (ft)	RHR	Stream 1ype
L					Camp Br	Branch Reach 1		(Upstream of Headcut	eadcut)				
Ĺ			38.7	38.7	21.3	1.8	2.7	11.8	180	8.5	2.7		
	3	2.4	38.7	52.8	19.6	2	2.4	9.9	75	3.8	3.1	1.3	ш
	5	L	36	44.1	16.5	2.2	2.6	7.5	110	6.6	3.1	1.2	
average	age	2.4	37.8	45.2	19.1	2.0	2.6	9.7	121.7	6.3	3.0	1.2	
min		2.4	36.0	38.7	16.5	1.8	2.4	7.5	75.0	3.8	2.7	1.0	
max		2.4	38.7	52.8	21.3	2.2	2.7	11.8	180.0	8.5	3.1	1.3	
	2	2.4	55.8	55.8	23.6	2.4	4.3			1	4.3		
					Camp	Branch	Reach 2	(Headcut to	Ford)				
	4	2.4	38.7	62.2	18.3	1	2.7	8.7	100	5.5	4	1.5	Ш
	. 9	2.4	29.2	51.4	12.9	2.3	3.2			1	4.8	1.5	
					Camp B	Camp Branch Reach 3		(Downstream of	of Ford)				
		2.7	42	1 104.1	16	2.6	3	6.2	17.2	1.1	6.7	2.2	ტ
	0	2.7	42	124.3	19.5	2.2	2.5	8.9	24.3	1.2	6.1	2.4	Э
Riffles average	age	2.7	42	114.2	17.75	2.4	2.75	7.55	20.75	1.15	6.4	2.3	
uin		2.7	42	104.1	16	2.2	2.5	6.2	17.2	1.1	6.1	2.2	
max		2.7	42	124.3	19.5	2.6	e	8.9	24.3	1.2	6.7	2.4	
ľ	10	2.7	57.8	130.2	19.4	ო	4.1		******		7.4	1.8	1
	7	2.7	38.4	89.2	13.4	2.9	3.3	1	1		6.8	2.1	
averade	age	2.7	48.1	109.7	16.4	2.95	3.7				7.1	1.95	
lin Min	 	2.7	38.4	89.2	13.4	2.9	3.3	1	ł	1	6.8	1.8	
max		2.7	57.8	130.2	19.4	3	4.1	-	1		7.4	2.1	
					Unnamed		Tributary to Camp Branch	ip Branch					
	F	0.3	9.2	9.2	15.7	0.6	1.4	26.17	100	6.4	1.4	+	ပ
	2	0.3	9.4	13.3	9	1.6	2.7	3.75	100	16.6	1.5	1.07	Ш
Riffles average	rage	0.3	9.3	11.25	10.85	1.1	2.05	14.96	100	11.5	1.45	1.04	
	>	0.3	9.2	9.2	9	0.6	1.4	3.75	100	6.4	1.4	-	
May		, c	7 0	12.2	157	4 6	2 2	76 17	100	155	u T	1 07	

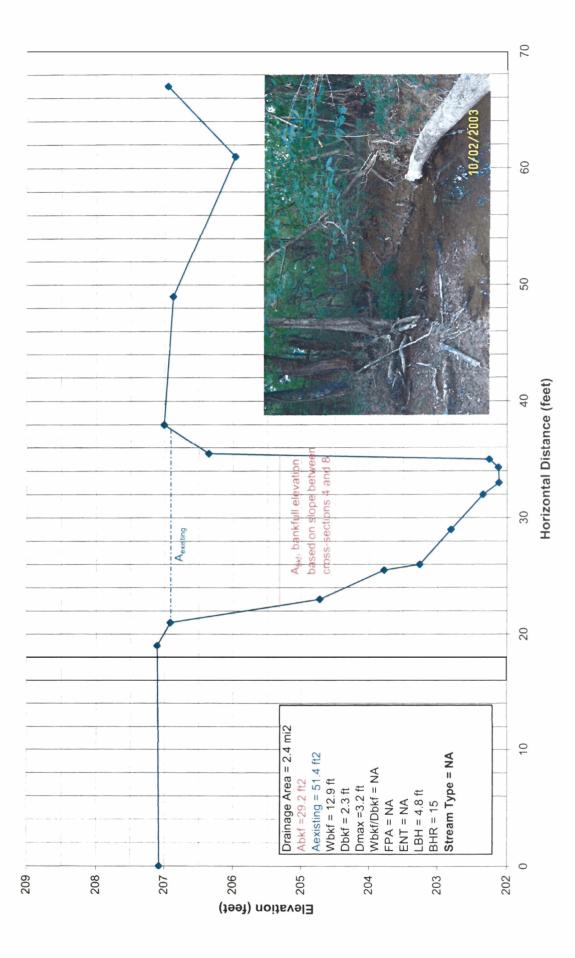
Cross-section 1: riffle, Camp Branch

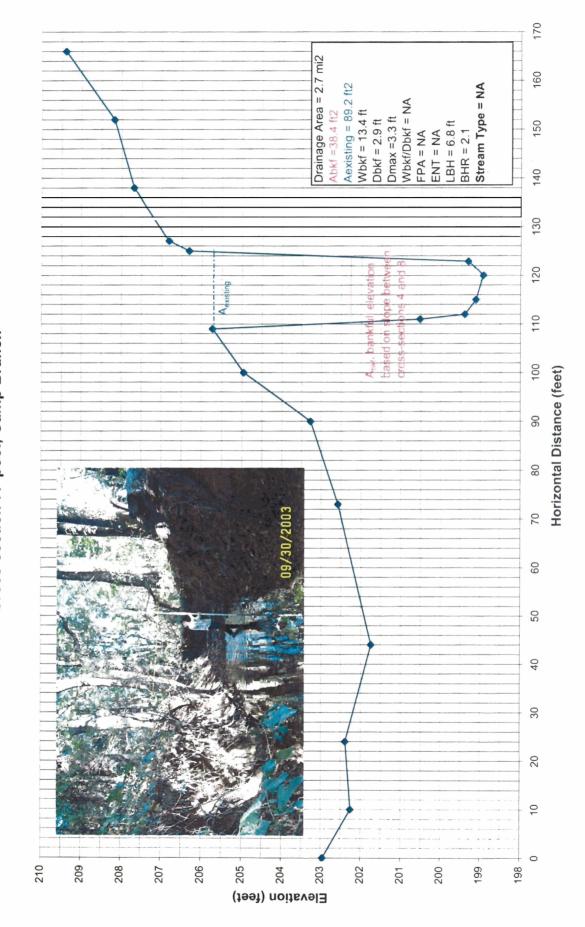


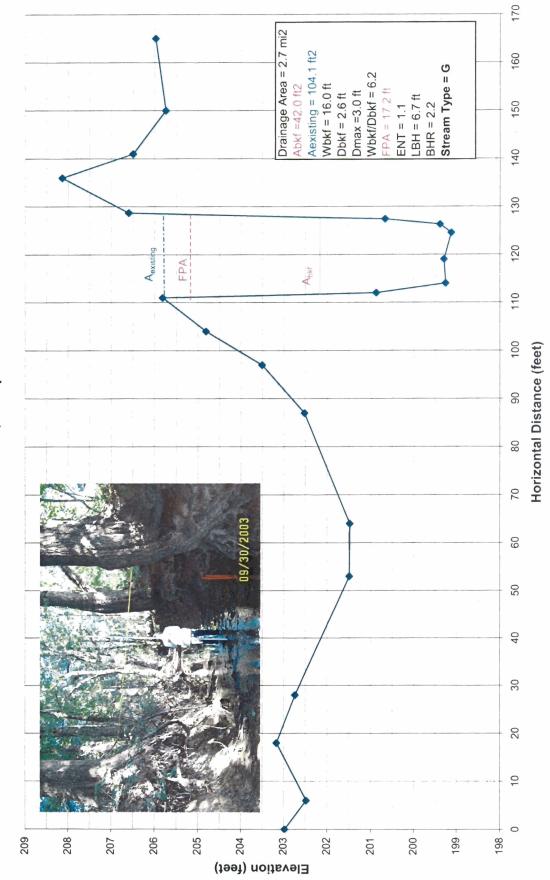
Cross-section 2: pool, Camp Branch

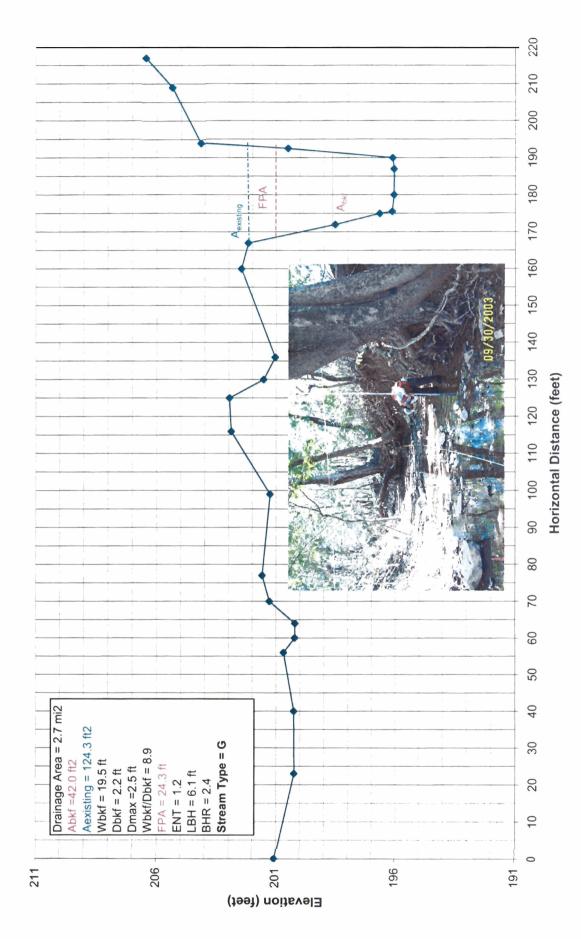


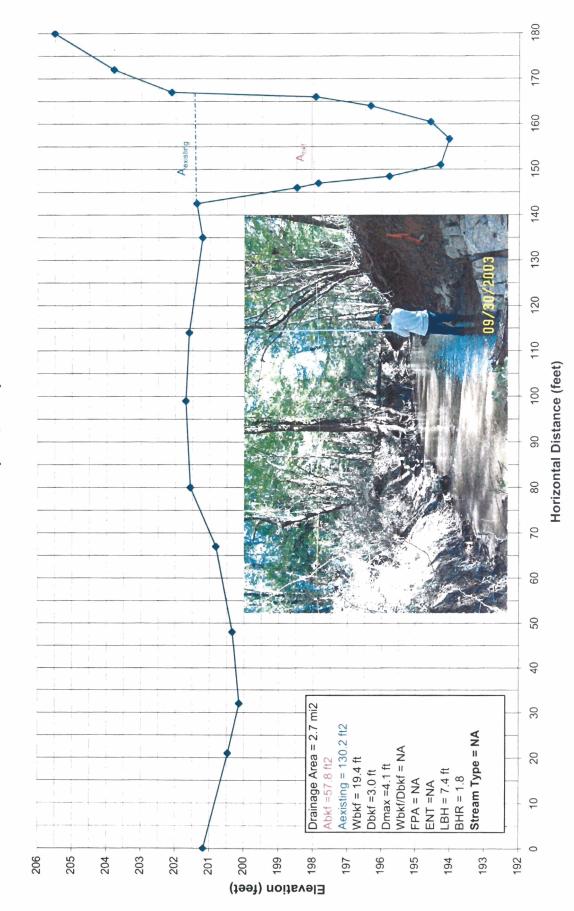
Cross-section 3: riffle, Camp Branch

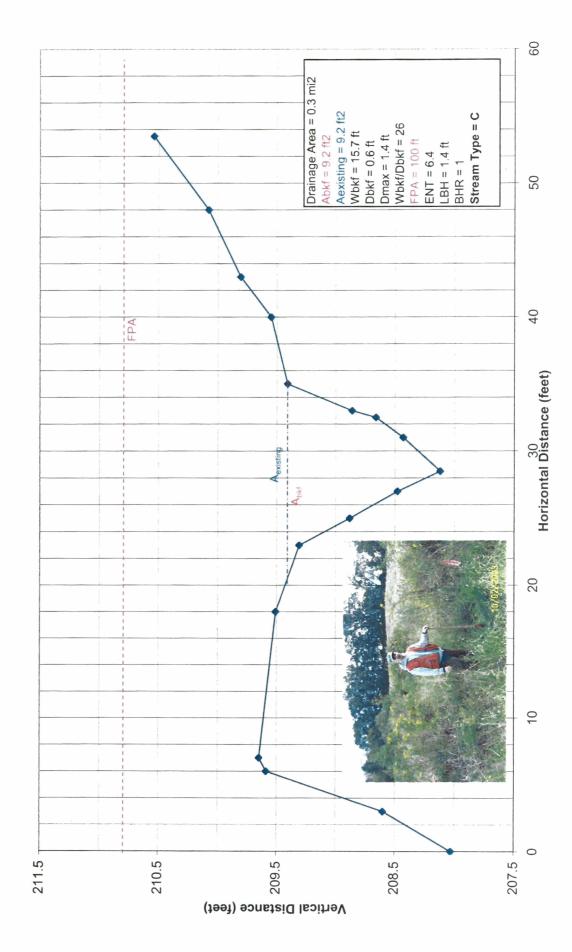


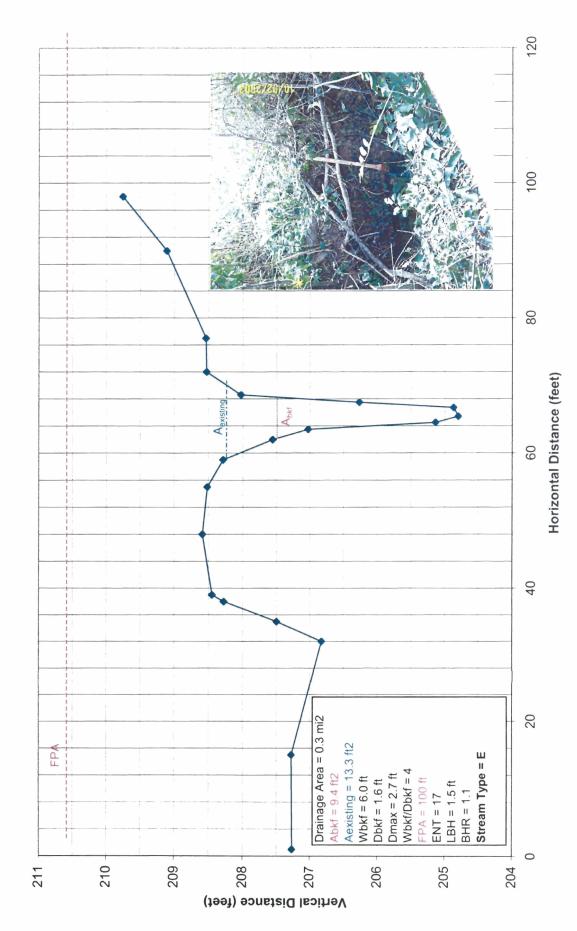



Horizontal Distance (feet)

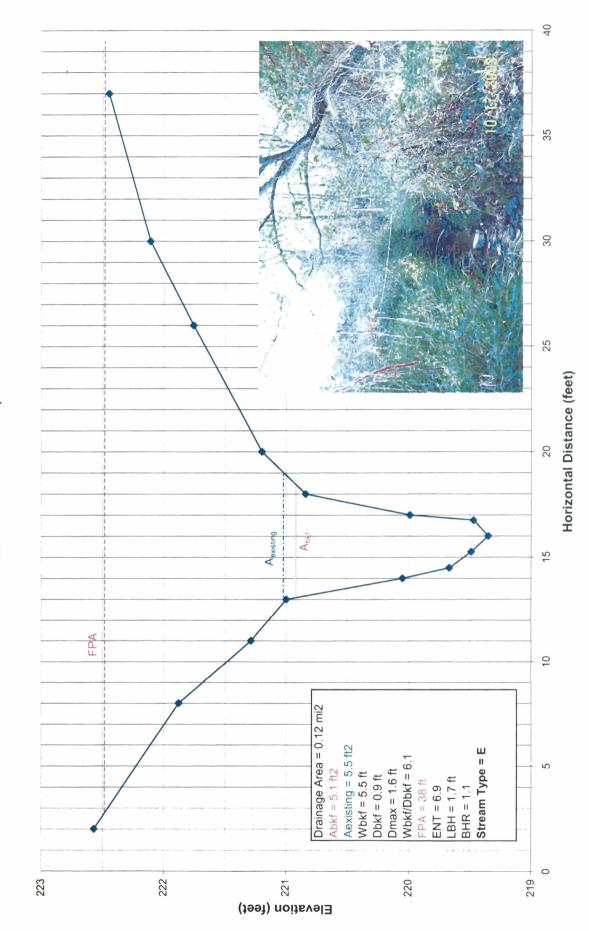


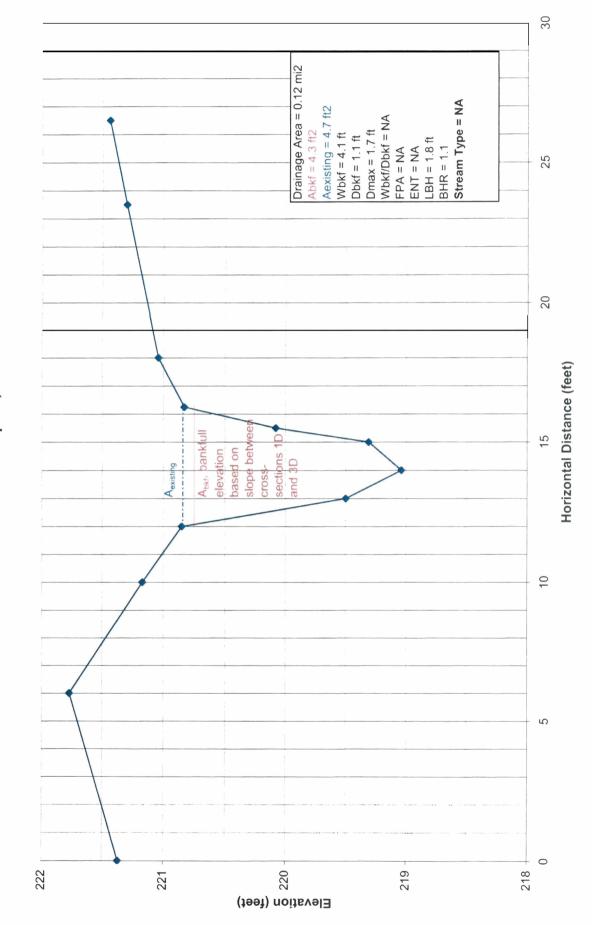

Cross-section 7: pool, Camp Branch



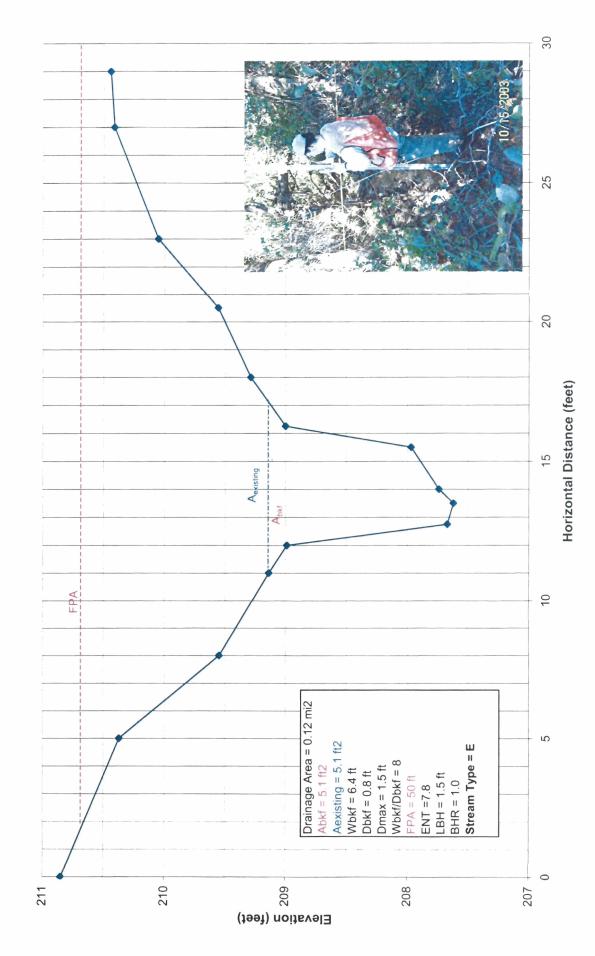


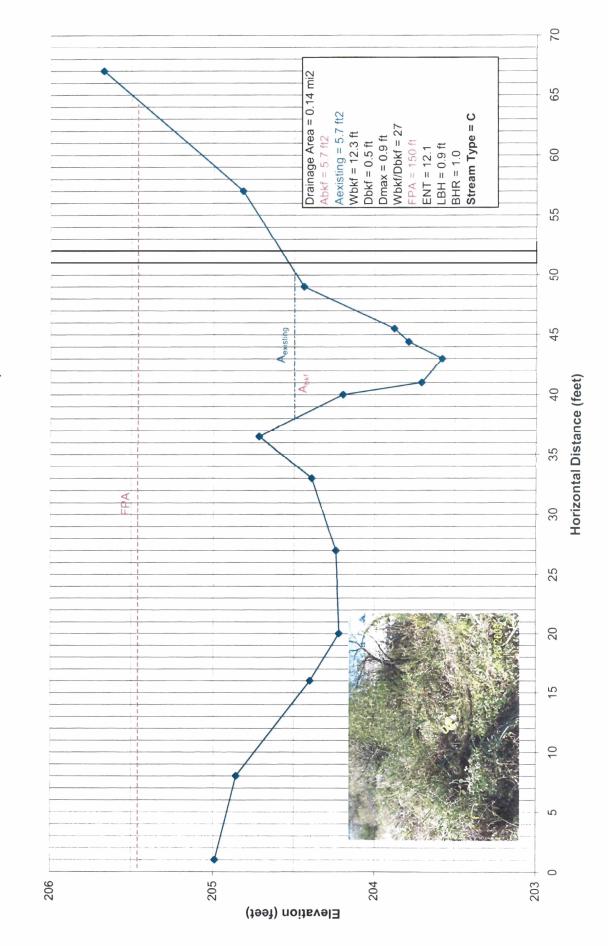
Cross-section 10: pool, Camp Branch


Cross-section 1UTCB: UT to Camp Branch

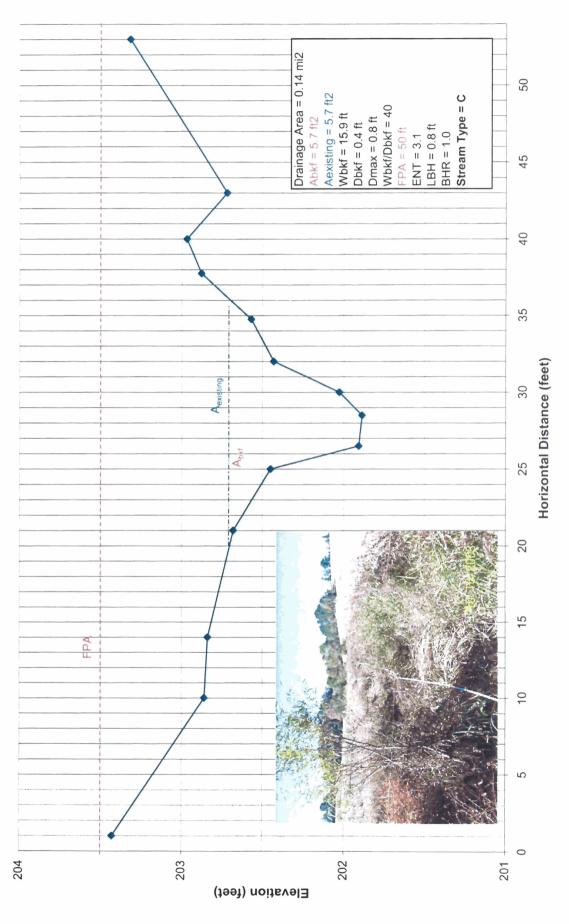

Cross-section 2UTCB: UT to Camp Branch

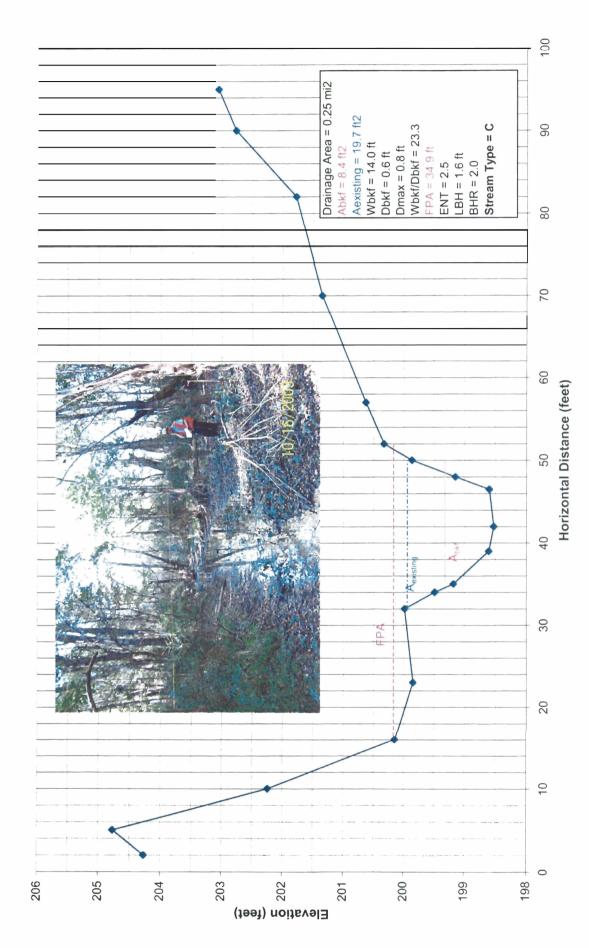
Bishop Property On-Site Dimension: Dula Thoroughfare Area

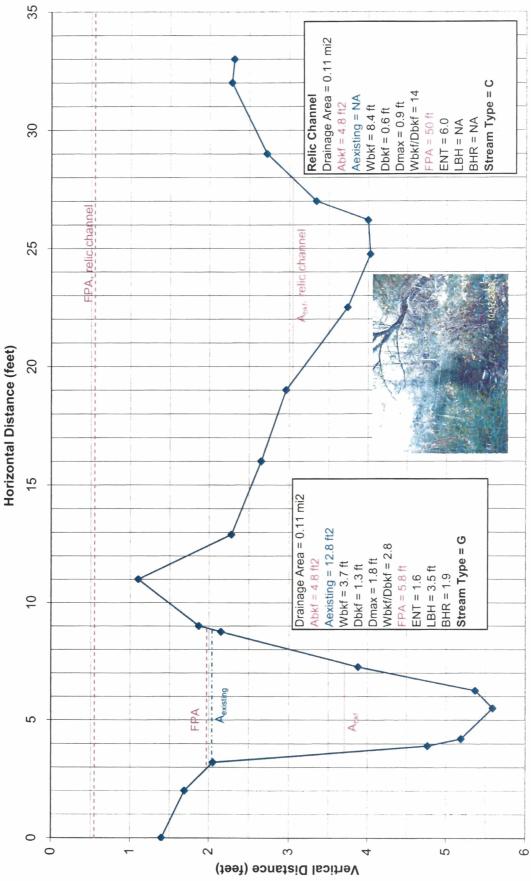

X-sect	X-sect DA (mi ²) A _{bkf} (ft ²) A _{existing}	A_{bkf} (ft ²)	(ft ²)	W _{bkf} (ft) D _{ave} (ft)	Dave (ft)	D _{max} (ft)	W/D Ratio	FPA	Entrench LBH (ft)	LBH (ft)	BHR	Stream Type
					Dul	Dula Thoroughfare	ghfare					
	0.12	5.1	5.5	5.5	0.9	1.6	6.1	38	6.9	1.7	1.1	L
	0.12	5.1	5.1	6.4	0.8	1.5	ω	50	7.8	1.5	-	ш
average	0.12	5.1	5.3	5.95	0.85	1.55	7.05	4	7.35	1.6	1.05	
min	0.12	5.1	5.1	5.5	0.8	1.5	6.1	38	6.9	1.5	-	
max	0.12	5.1	5.5	6.4	0.9	1.6	œ	50	7.8	1.7	1.1	
2D	0.12	4.3	4.7	4.1	1.1	1.7	1	1	1	1.8	1.1	
4D	0.14	5.7	5.7	12.3	0.5	0.9	27	150	12.1	0.9	-	
5D	0.14	5.7	5.7	15.9	0.4	0.8	40	50	3.1	0.8	-	U
6D	0.25	8.4	19.7	14	0.6	0.8	23.3	34.9	2.5	1.6	2	
average	0.18	6.60	10.37	14.07	0.50	0.83	30.10	78.30	5.90	1.1	1.3	
min	0.14	5.7	5.7	12.3	0.4	0.8	23.3	34.9	2.5	0.8	-	
max	0.25	8.4	19.7	15.9	0.6	0.9	40	150	12.1	1.6	2	
			D	Inamed T	ributary	to Dula T	Junamed Tributary to Dula Thoroughfare					
1UTD	0.11	4.8	12.8	3.7	1.3	1.8	2.8	5.8	1.6	3.5	1.9	U
2UTD	0.12	5.1	6.9	4.4	1.2	1.9	3.6	40	9.1	2.3	1.2	ш
3UTD	0.13	4.4	6.9	6.2	0.7	1.2	8.9	40	6.5	1.5	1.3	ш
average	0.12	4.77	8.87	4.77	1.07	1.63	5.10	28.60	5.73	2.4	1.5	
min	0.11	4.4	6.9	3.7	0.7	1.2	2.8	5.8	1.6	1.5	1.2	
max	0.13	5.1	12.8	6.2	1.3	1.9	8.9	40	9.1	3.5	1.9	

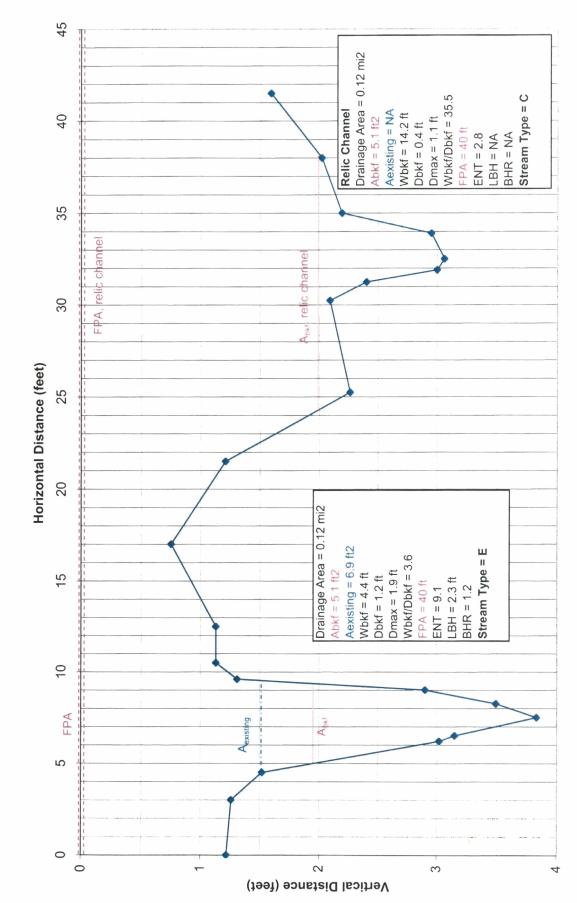

Cross-section 1D: riffle, Dulla

Cross-section 2D: pool, Dulla

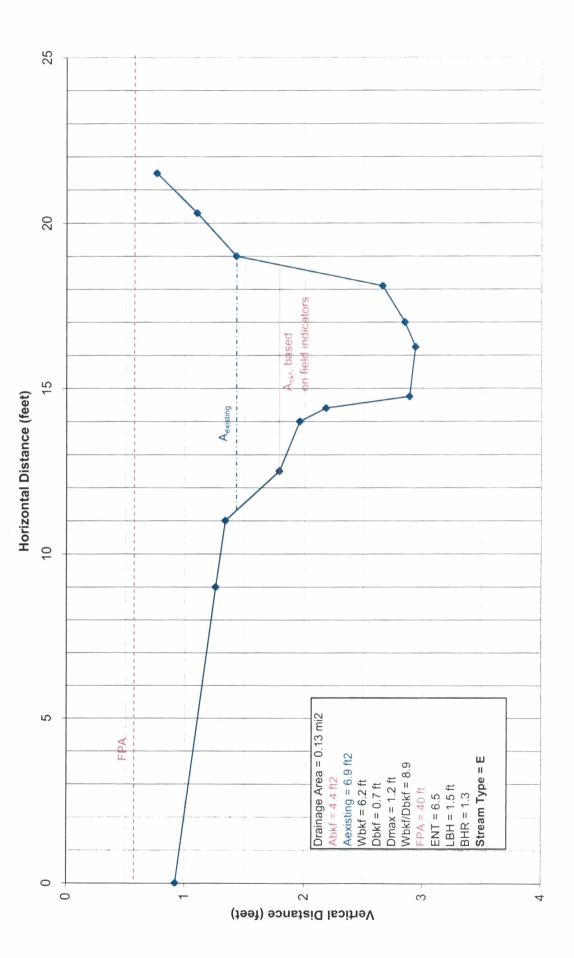



Cross-section 3D: riffle, Dulla





Cross-section 6D: wetland area, Dulla


Cross-section 1UTD: riffle, UT to Dulla

Pattern: Camp Branch

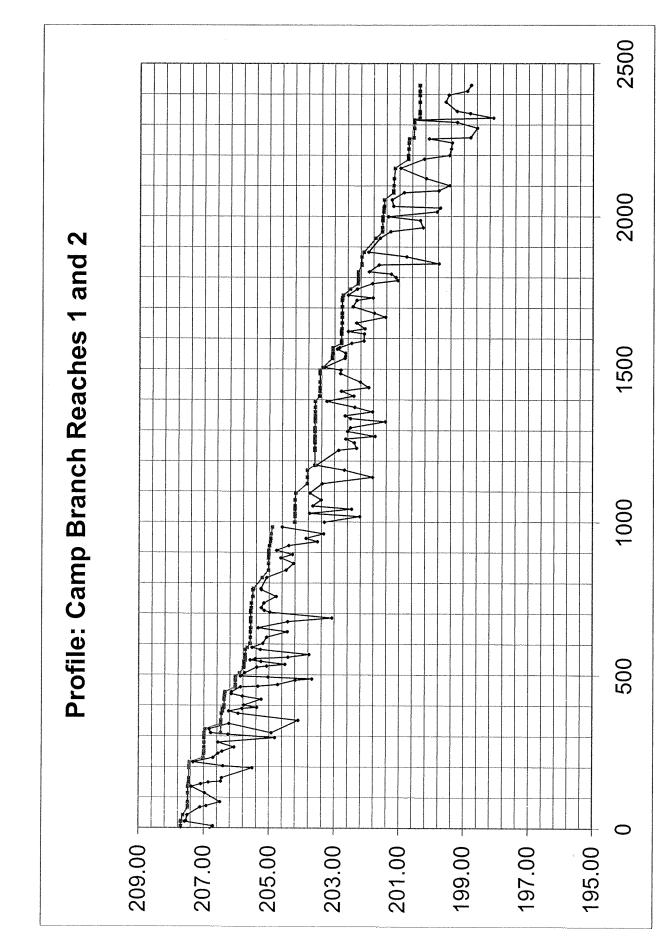
	Reaches 1	Reaches 1 and 2 Camp Branch	ranch	
	SdD	Upstream to Ford		
	Pool to pool			Radius of
	spacing	Meander	Beltwidth	curv
	(feet)	Length (feet)	(feet)	(feet)
	45	66	30	16.7
	46	85	31	23.4
	50	88	33	27.1
	51	89	34	27.1
	53	92	34	28.1
	55	95	35	28.6
	56	101	36	29.2
	58	102	38	29.7
	61	103	39	29.7
	62	112	40	32.3
	64	116	42	32.8
	65	123	43	36.5
	73	126	46	40.6
	73	133	46	40.6
	75	135	46	50.0
	79	137	52	53.3
	79	143	52	53.3
	52	147	57	100.0
	79	155	63	106.7
	89	159	68	116.7
	95	172	89	120.0
	112	175	97	133.3
	118	182		133.3
	120	200		133.3
	122	209		200.0
	122	237		
	140	240		
	145			
Median	74	133	42.5	40.6
Range	45-145	66-240	30-97	17-200

Pool to pool Meander spacing (feet) Length (feet) No repetitive riffle and pool pattern.
No repetitive riffle and pool pattern.
No repetitive riffle and pool pattern.
pattern.
NA NA
NA NA

Pattern: Dula Thoroughfare

	ι Υ	Reach 1 Dulla	a		,
	Upstre	Upstream/Stream Reach	Reach		
		Meander			
	Pool to pool	Length	Beltwidth	Beltwidth/	
	spacing (feet)	(feet)	(feet)	bkf	
			9		
		L	7		
		I	7		
		1	7		
		I ,	2		
		L	ω		
		J	ω		
		I	ω		,
			ω		
	No repetitive riffle and	riffle and	ω		
	pool pattern	ern	8		
			8		
		L	6		
		I	10		
			10		
		L	13		
		L	41		
		L	16		
		L	20		
			20		
Median	NA	NA	8	1.333333333	
Low	NA	AN	9	4	
High	NA	NA	20	3.33333333	

la	ea Reach	Meander Length Beltwidth	(feet) (feet)					metter lear had	anu pool pallern				 	NA NA	NA NA	NA NA
Reach 2 Dulla	Š	00 00 00	(feet) (fe					No receiption of the	No repende mine and poor partern					NA	N N N	NA NA
	ă													Median	Low	Hiah


gina-providence (ginina-provide enderscherense, generalischere) (ginina-providence, derschertensense generalischerensense (ginina-providence)) (ginina-providence) Franzisch Laufe (ginina-provide) (ginina-provide) (ginina-provide) (ginina-provide) (ginina-provide) (ginina-pro

and the second s

Pattern: Unnamed Tributary to Dula Thoroughfare

	Re Downst	Reach 2 UT Dulla Downstream E-type Reach	lla Reach	
	Dool to pool	Moandor		
	spacing	Length	Beltwidth	Radius of
	23	40	10	13 1 (leel)
	26	42	14	19.7
	27	45	16	21.9
	28	46	16	24.1
	32	49	17	24.1
	33	53	18	24.1
	33	53	18	26.3
	34	61	19	30.6
	35	62	19	30.6
	37	67	20	35.0
	37	68	21	35.0
	41	71	22	39.4
	42	74	24	43.8
	43	77	25	48.1
	43	80	29	48.1
	46	81	29	48.1
	46	83	31	61.3
	48	97	32	61.3
	54	97	38	70.0
	54	100	41	70.0
	56	100		
	58	106		
	63			
Median	41	69.5	20.5	35.0
Low	23	40	10	13.1
High	63	106	41	70

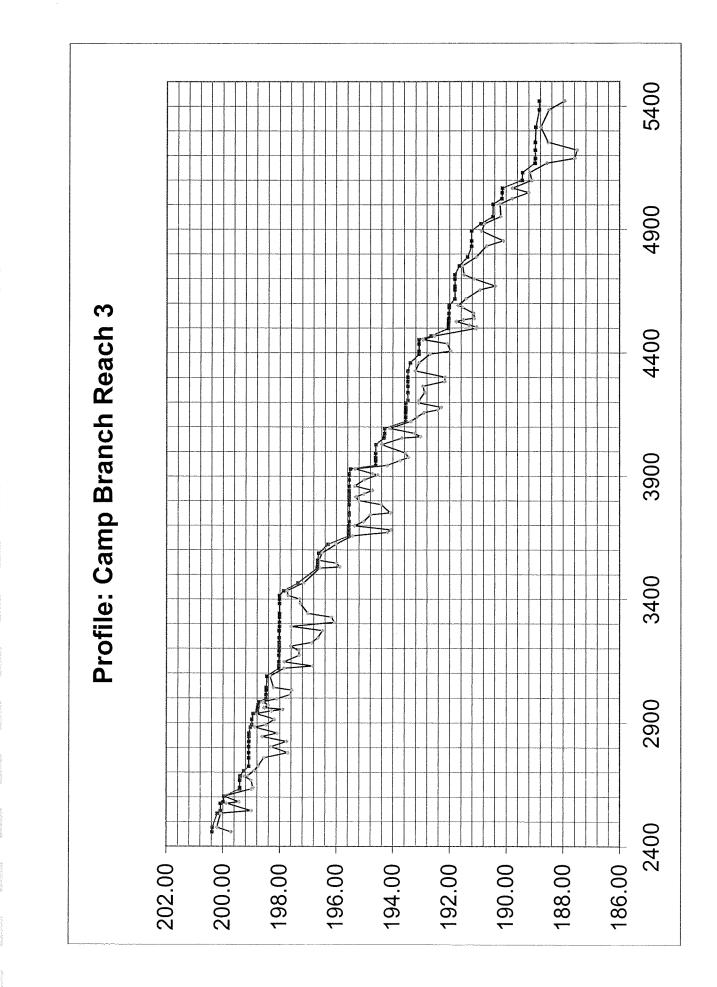
	Reach 1 Upstream C	Reach 1 UT Dulla Upstream G-type Reach	Ę	
	Pool to pool	Meander		
	spacing	Length	Beltwidth	Beltwidth/
	(teet)	(feet)	(feet)	bkf
			22	5.9
			18	4.9
			21	5.7
		•		
		* ********		
		•••••		
		•		
	No societiti			
	hool partern	auein		
		4		
		•		
Median	NA	NA	21	5.7
νo	NA	NA	18	4.9
High	٨A	AN	22	5.9

normality (1999)

G:\Projects\Projects02\02-113.34 Bishop Restoration Planning\stream_measurements\Profile\ADJUSTED TO NCDOT BM\Camp Branch Profile_facet ----- ۲ ۲ ۵ ۵۸ ۵۰۰ slopes_5_6_04.xls

re Elevation 206.81 206.81 207.58 207.58 207.58 207.58 207.55 206.97 206.97 206.97 206.45 206.45 206.45 206.45 206.42 206.42 206.42 206.42 206.42 206.67 206.72 206.67 206.72 206.67 206.72 206.67 206.72 206.73 206.75 200	vised Bed Revised WS			
206.81 206.72 206.57 207.58 P1 207.54 P1 207.50 P1 206.97 TR2 206.97 P2 206.97 P2 206.65 P2 206.45 P2 206.44 P3 206.44 P3 206.42 P3 206.67 BR3 206.67 BR4 206.57 BR4 206.57 P4 206.57 P4 206.33	Elevation			
206.72 207.58 TR1 207.58 BR1 207.59 BR1 207.11 206.97 TR2 206.92 P2 206.97 P2 206.65 BR2 206.65 P2 206.65 P3 206.65 P3 206.67 BR4 206.57 BR4 206.57 P4 206.57 P4 206.28 P4 206.28	206.81 207.70	374	205.95	206.46
TR1 207.58 TR1 207.54 BR1 207.11 206.92 P1 206.97 TR2 206.97 P2 206.97 P2 206.67 BR3 206.45 P3 206.45 P3 206.67 BR3 206.67 P3 206.67 P3 206.67 P3 206.67 P3 206.67 P3 206.67 P3 206.67 P3 206.67 P4 206.57 P4 206.28		-	TR5 206.24	206.43
TR1 207.54 BR1 207.51 BR1 207.50 BR2 206.97 TR2 206.97 TR2 206.97 BR2 206.65 P2 206.45 TR3 207.33 206.45 BR3 206.45 P3 206.72 BR4 206.57 BR4 206.57 P4 206.57 P4 206.28 P4 206.28		390	205.83	206.43
207.50 BR1 207.11 206.92 P1 206.50 BR2 206.50 BR2 206.65 P2 206.86 BR3 206.45 BR3 206.45 P3 206.72 P3 206.67 BR4 206.57 BR4 206.57 P4 206.23 P4 206.23	207.54			206.39
 BR1 207.11 P1 206.92 P1 206.92 P1 206.92 TR2 206.97 BR2 206.96 P2 206.46 P2 206.46 BR3 206.45 BR3 206.42 P3 206.57 P3 206.57 BR4 206.57 P4 206.26 			BR5 205.78	206.38
P1 206.92 TR2 206.50 TR2 206.50 BR2 206.66 P2 206.48 P2 206.48 P2 206.48 BR3 206.42 P3 206.57 P3 206.57 BR4 206.57 BR4 206.57 P4 206.26 P4 206.26	207.11			206.38
P1 206.50 TR2 206.97 TR2 206.97 BR2 207.09 BR2 206.45 P2 206.45 P2 206.45 BR3 206.42 P3 206.72 P3 206.57 BR4 206.57 BR4 206.57 P4 206.26 P4 206.28	206.92			206.37
TR2 206.97 TR2 207.38 BR2 206.86 BR2 206.86 P2 206.45 TR3 206.45 BR3 206.42 P3 206.72 P3 206.57 BR4 206.57 BR4 206.57 P4 206.26 P4 206.28 P4 206.29	206.50			206.36
TR2 207.38 BR2 206.86 BR2 206.86 P2 206.45 P2 206.45 TR3 206.42 BR3 206.72 P3 206.67 P3 206.67 BR4 206.57 BR4 206.57 P4 206.23 P4 206.23	206.97		206.15	206.35
207.09 BR2 206.86 P2 206.45 P2 206.45 TR3 206.42 BR3 206.42 P3 206.57 P3 206.65 P3 206.65 P3 206.67 BR4 206.57 P4 206.28 P4 206.23 P4 206.23	207.38			206.03
BR2 206.86 206.48 P2 206.45 P2 206.45 BR3 206.42 BR3 206.57 P3 206.57 P3 206.57 P3 206.57 P3 206.57 P3 206.57 P3 206.57 P4 206.26 P4 206.28 P4 206.23 P4 206.23	207.09	462	205.35	206.03
206.48 206.45 206.45 TR3 205.51 206.42 BR3 206.72 P3 206.67 P3 206.67 TR4 206.57 BR4 206.57 P4 206.28 P4 206.28 P4 206.28 P4 206.23	206.86			206.03
P2 206.45 TR3 205.51 TR3 206.42 BR3 206.72 BR3 206.72 P3 206.57 P3 206.57 TR4 206.57 BR4 206.57 P4 206.28 P4 206.28	206.48			206.03
P2 205.51 TR3 206.42 206.42 BR3 206.72 206.57 P3 206.65 P3 206.65 TR4 206.57 BR4 206.26 BR4 206.26 P4 206.23 P4 204.93	206.45		203.68	206.03
206.42 TR3 207.33 206.57 BR3 206.57 P3 206.67 P3 206.67 P3 206.64 BR4 206.26 BR4 206.26 BR4 206.23 P4 206.23 P4 204.93	205.51			206.03
TR3 207.33 206.72 BR3 206.57 206.57 P3 206.07 206.57 TR4 206.57 BR4 206.26 BR4 206.23 P4 204.93	206.42			206.02
206.72 206.57 206.57 P3 206.07 206.57 TR4 206.57 BR4 206.26 BR4 206.28 BR4 206.23 P4 204.93	207.33			205.90
206.57 BR3 206.44 P3 206.07 P3 206.57 TR4 206.56 BR4 206.26 BR4 206.28 BR4 206.23 P4 204.93	206.72			205.78
BR3 206.44 206.07 P3 206.57 P3 206.57 TR4 206.26 BR4 206.23 BR4 206.23 P4 204.93		528	205.07	205.77
206.07 206.57 206.57 206.57 206.26 BR4 206.23 BR4 206.23 P4 204.93	206.44			205.77
206.57 P3 204.82 206.26 TR4 206.26 BR4 206.23 BR4 206.23 P4 204.93				205.77
P3 204.82 TR4 206.26 BR4 206.79 BR4 206.23 P4 204.93				205.73
206.26 TR4 206.79 BR4 206.23 BR4 206.23 P4 204.93	204.82			205.73
TR4 206.79 206.84 BR4 206.23 204.93 P4 204.93	206.26			205.73
206.84 BR4 206.23 204.93 P4 204.10	206.79		P8 203.77	205.73
BR4 206.23 204.93 P4 204.10	206.84			205.73
204.93 P4 204.10	206.23	589	205.52	205.67
P4 204_10	204.93		BR9 205.19	205.58
-		622	205.07	205.57

Camp Branch Profile - Reach 1 & 2 Survey conducted by Corri & Kendrick (to sta 602) and Grant, Heather, & Ben (rest of stream)


The following calculations are a result of printing out the profile graph (as originally surveyed) and amending point by point

G:\Projects\Projects\Projects02\02-113.34 Bishop Restoration Planning\stream_measurements\Profile\ADJUSTED TO NCDOT BM\Camp Branch Profile_facet slopes_5_6_04.xls Camp Branch Profile_Reach E

203.60 203.60 203.60 203.59 203.59 203.59 203.59 203.59 203.59	203.59 203.59 203.45 203.45 203.45 203.45	203.45 203.45 203.07 203.07 203.05 203.05	203.05 203.05 202.79 202.79 202.79 202.77 202.77	202.77 202.77 202.76 202.74 202.52 202.28 202.27 202.27
201.75 202.60 202.51 201.43 201.43 202.51 202.68 201.83	202.302 203.24 202.79 201.95 201.95 202.21 202.82	202.02 202.81 203.32 202.67 202.67 202.67 202.67	202.92 202.85 202.85 202.10 202.09 202.59 202.33 202.33	201.78 202.44 202.32 201.82 202.31 202.31 201.84 201.05 201.05
P14	TR15 BR15 P15	TR16 BR16 P16 TR17	BR17 P17	TR18 BR18 P18
1281 1297 1309 1329 1339 1348 1361	1395 1412 1428 1440 1485	1497 1505 1535 1542 1552 1565	1565 1570 1584 1615 1623 1623 1651	1704 1704 1725 1733 1742 1762 1762 1780 1790
205.57 205.56 205.56 205.56 205.56 205.56 205.54 205.54	205.50 205.50 205.48 205.21 205.21 205.02 205.02	205.02 205.01 205.01 204.99 204.95 204.95	204.90 204.94 204.20 204.21 204.20 204.20 204.20 204.20	203.83 203.83 203.83 203.83 203.60 203.60 203.60 203.60 203.60 203.60
204.44 205.34 203.07 203.07 204.98 205.15 205.24	204.78 205.24 205.25 205.07 204.48 204.24	204.64 204.28 204.77 204.40 203.52 203.52	203.87 203.33 204.60 202.22 203.76 203.66 203.66 203.41	203.75 203.38 201.82 202.70 202.87 202.32 202.33 202.33
P9 TR9b RB9b	P9b TR10 BR10	P10 TR11 BR11	P11 TR12 BR12 P12	TR13 BR13 P13 TR14 BR14
640 653 673 686 704 719 719	756 778 818 842 864	882 907 922 946 946	961 961 983 999 1018 1028 1028 1072	1094 1125 1170 1170 1235 1235 1260 1272

ements\Profile\ADJUSTED TO NCDOT BM\Camp Branch Profile_facet	Camp Branch - Reach E	
cts02\02-113.34 Bishop Restoration Planning\stream_measurements\Profile\A	<u>S</u>	
G:\Projects\Proje	slopes_5_6_04.x	

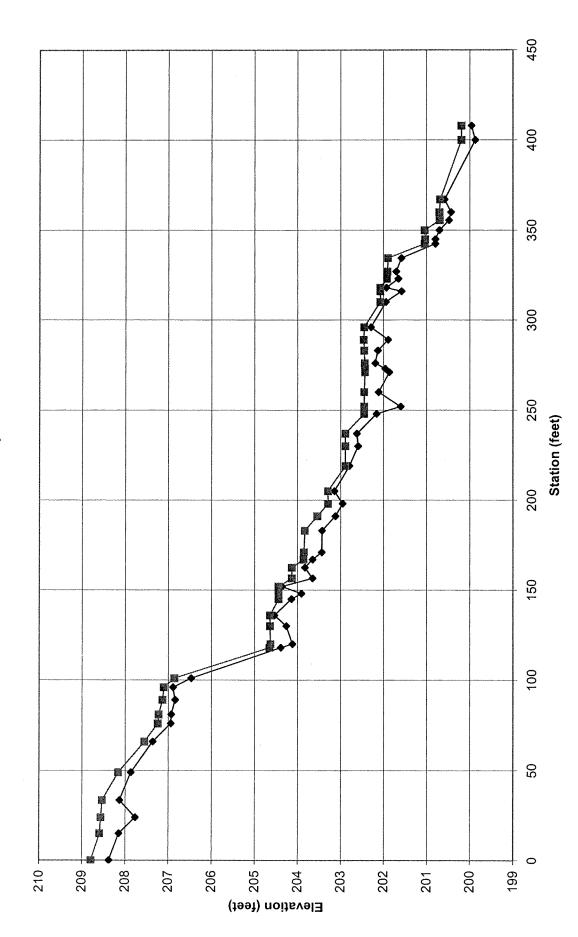
202.27 202.27 202.17 202.17 202.17 202.10 202.10 201.73	201.53 201.53 201.52 201.52 201.49 201.48	201.47 201.47 201.19 201.19	201.18 201.17 201.14 200.73 200.73 200.72 200.72 200.56 200.56	200.54 200.54 200.37 200.37 200.37 200.37 200.37 200.37 200.37
201.26 201.94 201.64 199.78 200.78 201.96 201.60	201.28 200.27 200.36 201.35 199.84 199.74	201.19 201.24 200.86 199.79	199.44 200.18 200.97 200.24 199.45 199.37 200.09 198.80 198.59	199.21 200.54 198.09 199.22 199.47 198.90 198.90
TR19 BR19 P19 TR20	BR20 P20	TR21 BR21	P21 TR22 BR22 P22 TR23	BR23 P23
1811 1819 1845 1845 1868 1883 1929	1950 1963 1987 1999 2015 2028	2033 2054 2078 2084	2101 2124 2158 2158 2200 2221 2254 2258 2289	2308 2316 2322 2337 2337 2337 2337 2337 2337 233

G:\Projects\Projects02\02-113.34 Bishop Restoration Planning\stream_measurements\Profile\ADJUSTED TO NCDOT BM\Camp Branch Profile_facet slopes_5_6_04.xls Camp Branch - Reach G

	197.85		•	197.31 198.03	197.33 198.02	197.61 198.02	196.86 198.02	196.65 198.02	196.49 198.02	197.60 198.01	106 07 198 01		•	- 1- 1			- +- +- +- +- +-									195.01 197.01 197.28 197.75 196.59 196.60 196.61 196.61 196.61 196.61	196.00 197.28 197.28 197.75 197.75 196.59 196.50 196.61 196.50 196.50 196.50 196.50	196.01 197.73 197.73 197.75 196.50 196.50 196.50 196.50 196.50 194.20	195.01 197.73 197.73 197.75 196.50 196.50 196.61 196.61 196.61 196.50 196.50 195.37 195.37	197.28 197.28 197.28 197.21 197.21 197.21 197.21 196.59 196.61 196.61 196.61 196.00 196.60 196.60 195.87 196.00 196.00 195.33 195.03	197.28 197.28 197.28 197.71 197.75 196.00 196.60 196.60 196.60 196.60 196.60 196.60 196.60 196.00 19	197.28 197.28 197.71 196.000 196.000 196.000000000000000000000000000000000000	197.28 197.28 197.28 197.28 197.27 197.26 197.26 196.00 196.59 194.06 194.20 194.20 194.20 194.20
	BR30									P30							TR31	TR31	ТR31	TR31 BR31	TR31 BR31	TR31 BR31 P31	TR31 BR31 P31 TR32	TR31 BR31 P31 TR32	TR31 BR31 P31 TR32	TR31 BR31 P31 TR32 BR32	TR31 BR31 P31 TR32 BR32	TR31 BR31 P31 TR32 BR32	TR31 BR31 P31 TR32 BR32	TR31 BR31 P31 TR32 BR32	TR31 BR31 TR32 BR32	TR31 BR31 P31 TR32 BR32	TR31 BR31 P31 TR32 BR32
	3120	3129	3146	3173	3191	3209	3224	3243	3272	3289	3306	3327		3342	3342 3382	3342 3382 3400	3342 3382 3400 3415	3342 3382 3400 3415 3434	3342 3382 3400 3415 3434 3436	3342 3382 3400 3415 3434 3466 3466 3466	3342 3382 3400 3415 3434 3434 3436 3526 3526	3342 3382 3400 3415 3434 3534 3531 3531 3531	3342 3382 3415 3415 3434 3526 3526 3526 3531 3531	3342 3382 3400 3415 3415 3466 3526 3531 3531 3533 3536 3536	3342 3382 3400 3415 3434 3536 3536 3536 3536 3587 3587 3587 3587	3342 3382 3400 3415 3434 3534 3526 3526 3531 3536 3537 3558 3558 3558 3558 3558	3342 3382 3400 3415 3415 3415 3534 3534 3534 3534 3537 3537 3537 353	3342 3342 3415 3415 3415 3526 3526 3526 3526 3528 3528 3587 3587 3671 3671	3342 3342 3415 3415 3415 3415 3526 3526 3526 3526 3528 3531 3531 3533 3657 3657 3671	3342 3382 3400 3415 3415 3531 3531 3536 3531 3537 3558 3558 3558 3557 3557 3557 3557	3342 3382 3400 3415 3415 3434 3531 3531 3531 3531 3533 3531 3535 3537 3537	3342 3342 3400 3415 3415 3415 3531 3534 3534 3534 3534	3342 3342 3415 3415 3415 3415 3415 3526 3531 3526 3534 3534 3537 3537 3537 3537 3537 3537
Revised WS Elevation	200.37	200.36	200.19	200.08	200.08	199.98	199.96	199.40	199.40	199.40	199.39	199.38		199.26	199.26 199.09	199.26 199.09 199.09	199.26 199.09 199.09	199.26 199.09 199.09 199.09	199.26 199.09 199.09 199.09 199.08	199.26 199.09 199.09 199.09 199.08	99.26 99.09 99.09 99.09 99.08 99.08	199.26 199.09 199.09 199.08 199.08 199.08 199.03	199.26 199.09 199.09 199.08 199.08 199.03 199.03	199.26 199.09 199.09 199.08 199.08 199.03 198.98 198.98	199.26 199.09 199.09 199.08 199.08 198.98 198.98 198.93	199.26 199.09 199.09 199.08 199.08 198.98 198.93 198.79	99.26 99.09 99.09 99.08 99.08 99.03 198.98 198.78	99.26 99.09 99.09 99.09 99.08 99.03 98.98 98.98 98.93 98.77	99.26 99.09 99.09 99.09 99.08 99.08 98.98 98.77 98.77 98.77 98.77	99.26 99.09 99.09 99.09 99.08 99.08 98.79 98.79 98.77 98.77 98.77 98.77	99.26 99.09 99.09 99.09 99.08 99.08 98.98 98.79 98.77 198.77 198.77 198.76	99.26 99.09 99.09 99.09 99.08 99.08 98.98 98.79 98.77 98.77 98.76 98.74 98.74 98.74 98.74	99.26 99.09 99.09 99.09 99.08 99.08 98.79 98.79 98.77 98.77 98.78 98.74 98.74 98.48
Elevation Ele				199.00 2	199.87 2	199.42 1	199.96 1	199.00	198.94 1	199.01	199.25 1	199.13 1		·	198.91 198.76																		
Revised Feature		TR24		BR24		P24	TR25	BR25		P25	TR26				BR26	BR26	BR26	BR26 P26	BR26 P26	BR26 P26	BR26 P26	BR26 P26 TR27	BR26 P26 TR27 BR27	BR26 P26 TR27 BR27 P27	BR26 P26 TR27 BR27 P27 TR28	BR26 P26 BR27 BR27 P27 TR28 BR28	BR26 P26 BR27 BR27 P27 TR28 BR28 BR28	BR26 P26 BR27 P27 P27 P27 P28 P28 P28 TR29	BR26 P26 BR27 P27 P27 BR28 BR28 P28 P28 TR29	BR26 P26 BR27 BR27 P27 TR28 BR28 P28 P28 P28 TR29	BR26 P26 BR27 P27 P27 P28 P28 TR29 BR28 BR28	BR26 P26 BR27 P27 P28 BR28 BR28 P28 TR29 BR29 BR29	BR26 P26 BR27 P27 P28 P28 BR28 BR28 BR28 BR29
Чеў																																	

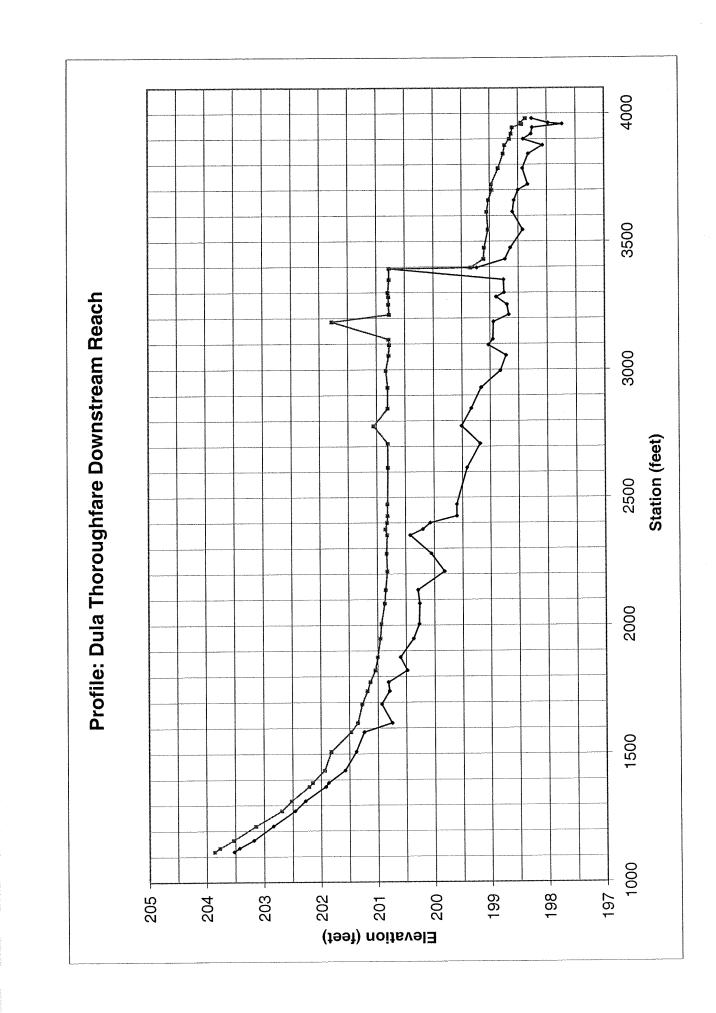
Camp Branch Profile - Reach 3

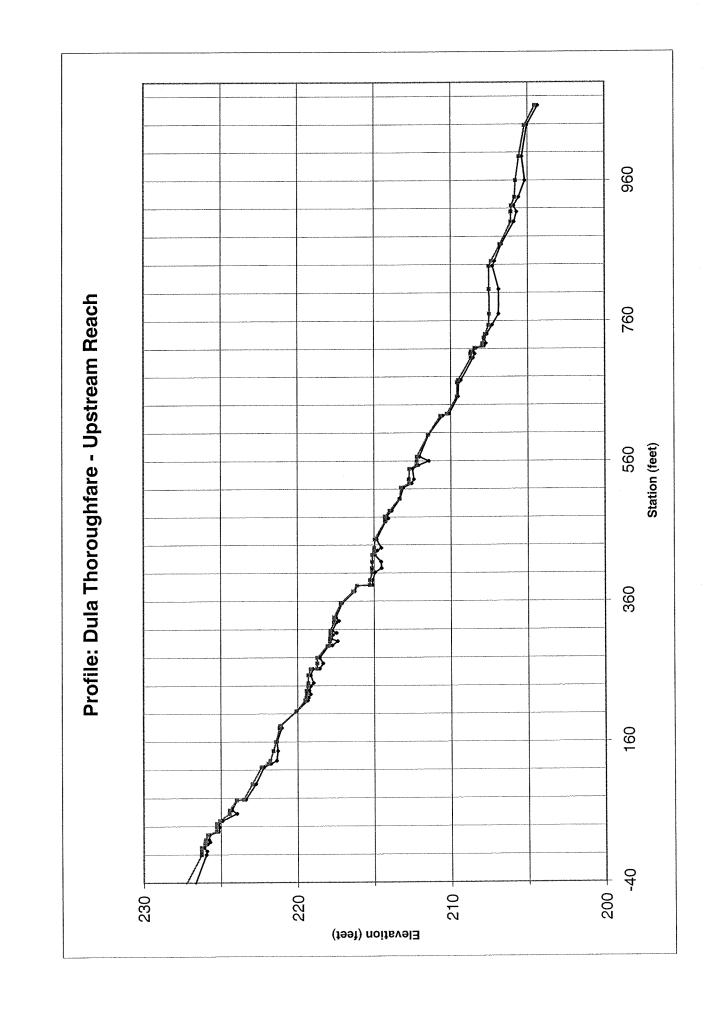
G:\Projects\Projects02\02-113.34 Bishop Restoration Planning\stream_measurements\Profile\ADJUSTED TO NCDOT BM\Camp Branch Profile_facet slopes_5_6_04.xls Camp Branch - Reach G


192.04 192.04

191.04 191.31

4505 4512


192.03 192.03 192.02 192.02 192.01	191.81 191.81 191.81 191.81 191.81	191.66 191.36 191.22 191.22	191.22 190.88 190.46 190.45 190.15	190.14 190.13 189.43 189.42 188.98 188.97 188.97	188.95 188.83 188.83 188.83
191.77 191.51 191.12 191.15 191.55 191.55	191.42 190.92 190.37 191.13 191.49	191.54 191.05 190.69 190.10	190.86 190.75 190.19 190.22 189.79	189.20 189.77 189.09 189.16 188.57 187.59 187.59	188.78 188.78 188.49 187.95 106.01
P38 TR39	BR39 P39 TR40	BR40 P40	TR41 BR41	P41 TR42 BR42 P42	I H43 BR43
4526 4534 4540 4560 4584 4581.5	4618 4655 4670 4699 4716	4752 4788 4832 4853	4894 4923 4952 5003 5025	5050 5068 5100 5131 5189 5222	5254 5315 5385 5421
195.55 195.55 195.55 195.55 195.55	195.50 194.61 194.61 194.61 194.61	194.60 194.32 194.30 194.29	194.29 193.55 193.55 193.55 193.55	193.54 193.54 193.47 193.47 193.47 193.47	193.47 193.38 193.08 193.08 193.08 193.08 192.04 192.65
195.02 194.73 195.35 195.02 194.71	195.34 194.20 193.76 193.45 193.56	194.39 193.67 193.03 193.23	194.10 193.36 193.16 192.91 192.41	192.29 193.10 193.08 192.88 192.94 192.16	193.21 193.08 192.69 192.08 192.93 192.53 191.06
	TR33 BR33 P33	TR34 BR34 P34	TR35 BR35	P35 TR36 BR36 P36	TR37 BR37 P37 TR38 BR38
3828 3842 3860 3905 3910	3929.5 3944 3963 3976 3976	4028.5 4055 4060 4074	4094 4123 4158 4158 4169	4180 4198 4208 4265 4285 4302	4327 4360 4395 4407 4454 4458 4468



UT to Camp Branch

				Feature
Station	Station reversed	Bed Elevation	WS Elevation	Amended
0	408	199.96	200.19	
8	400	199.87	200.19	br14
41	367	200.58	200.68	tr14
48	360	200.43	200.7	p13
52.5	355.5	200.48	200.69	br13
58	350	200.7	201.04	tr13
63	345	200.79	201.03	p12
65.5	342.5	200.79	201.04	br12
73.5	334.5	201.58	201.89	tr12
81	327	201.7	201.9	p11
85	323	201.65	201.91	br11
90	318	201.93	202.07	tr11
92	316	201.58	202.07	p10
98	310	201.94	202.07	br10
112	296	202.29	202.45	tr10
112	289	201.89	202.46	p9c
125	283	201.09	202.40	pac
132	276	202.19	202.43	
135	273	202.19	202.44	p9b
137	273	201.86	202.43	han
148	260			
140	252	202.11 201.6	202.45	202
160	252	201.0	202.45	p9a
171	240		202.45	br9
171	237	202.62	202.89	tr9
189		202.59	202.89	р8 Б9
203	219	202.79	202.89	br8
	205	203.14	203.29	tr8
210	198	202.95	203.29	br7
217 225	191 183	203.12	203.54	47
		203.43	203.83	tr7
237	171	203.44	203.85	p6
241	167 162 5	203.65	203.86	br6
245.5	162.5	203.83	204.13	tr6
251.5	156.5	203.65	204.13	br5
256	152	204.36	204.44	tr5
260	148	203.91	204.44	p4
263	145	204.14	204.44	br4
272	136	204.54	204.64	tr4
278	130	204.26	204.64	0
288	120	204.12	204.63	p3
290	118	204.39	204.65	br3
307	101	206.47	206.86	
312	96	206.89	207.1	tr3
319	89	206.84	207.13	p2
327	81	206.93	207.22	
332	76	206.94	207.24	br2
342	66	207.36	207.55	
359	49	207.87	208.16	
374.5	33.5	208.13	208.53	tr2
384	24	207.77	208.56	p1
393	15	208.15	208.59	br1
408	0	208.38	208.79	tr1

Feature	MR TR/KX21	THC	2	BR	1.0	TR	MR KX29	BR	G/TR KX29	BR	Р ТР КУЗВ	IN NAZO	BR	BASE OF DEBRIS JAM	P KX30	TR BR	ī a.	TR MP	MR,TOP OF ROOT GRADE CONTROL	MR, TOP AT 1.3 BR MOLITH OF CULVERT	MOUTH OF CULVERT	BR	Ϋ́α α.	TR	THC	P KX37	TR	IMK X-SECT 3U BR	P, AGGREGATION REACH STARTS		BUTION OF SLACK WATER	MR		TR KX 47	BR KX48 P KX50
Water Surface Elevation	217.19 216.37	216.12 215.29	215.26	215.13	215.14			214.98 214 GR	214.95	214.27	214.28			212.7	212.72	212.69	212.2	212.19 211.47	210.65	210.25 209.58	209.58	209.51	208.69	208.66	208.42	207.91	207.81	207.51	207.47	207.48	207.34	206.77	206.08 206.08		205.84 205.77
Bed Elevation	217.11 216.27	216.11 215.08	215.1	214.92	214.5	214.95	214.96	214.78	214.82	214.25	214.05 214.18	213.82	213.31	212.54	212.39	212.48	211.42	212.02	210.53	210.1 209.51	209.48	209.33	208.42	208.54	208.34	207.69	207.79	207.29	206.87	206.86	207.13	206.69	205.88	205.9	205.56 205.17
Composite Station	357 374	382 383	390	401	40/ 416	426	429	432 436	448	474	478 481	489	506	528	534	549 554	560	566 597	624	627 651 5	671.7	675	713	716	721	728	736	754	270	805	845 845	869	901 915	924	936 960
<u>0</u>		- caule	upstream culvert	downstream culvert KX01	ignue TR KX02	BR	KX03	AR MR	BR		RM BM	a.	HC	BHC	MR KX06	MK KXU/ BR	۵.	- Line -	a.	TR MR	x-sect 1D	<u>8</u> 8	TR	BR KX14	d. 21	THC	BHC	L L	BR, THC formed by failen tree			BR	TR	BR	T T
a Throughfare Profile		Elevation	227.25 upstream culvert								225.26 I.R 225.07 MR		224.44 HC			222.35 MK KXU/ 221.91 BR				221.14 TR 220.09 MR						219.15 THC						217.87 BR			217.61 P 217.62 TR
Dulla Throughfare Profile	Water Surface		227.25		226.24	226.03	225.99		225.27	225.28		224.44		223.52	222.95		221.78		221.18	221.14		219.43	219.42	219.31		219.15		218.72	218.07		217.89	217.87		217.63	

Feature	IXYED	FK7.5 WETLAND	FK8		X-SECT4D						X-SECT5D				CONVERGENCE OF DULLA W/DITCH			KY28		0000								FI 02					FL08	CONV OF DUILLA WIDITCH REAVER IMP					FH25 BEAVER DEN	FH23		FH21		TOP OF BEAVER DAM/H2O SURFACE	BASE OF BEAVER DAM		
Water Surface Elevation	205.54	205.19	204.52	203.86	203.77	203.53	203.14	202.69	202.52	202.21	202.15	201.94	201.82	201.47	201.35	201.27	201.18	201.13	201.04	2010	200.93	200.87	200.85	200.82	200.83	200.82	200.002	200.82	200.81	200.8	200.8	201.05	200.8	200.83	200.78	200.77	200.78	201.78	200.77	200.78	200.78	200.79	200.77	200.77	199.34	199.11	- 707 -
Bed Elevation	205.36	205.04	204.33	203.52	203.43	203.18	202.84	202.46	202.28	201.92	201.87	201.58	201.38	201.24	200.75	200.93	200.79	200.81	200.48	200.27	200.27	200.26	200.29	199.82	200.05	200.42	200.2	199.6	199.6	199.42	199.18	199.51	199.34	198.82	198.72	199.03	198.95	198.94	198.67	198.7	198.89	198.75	198.76	200.77	199.23	196.73	10.00-
Composite Station	Рbb	1038.5	1067	1119	1134	1164	1219	1278	1317	1373	1388	1436	1509	1585	1620	1693	1744	1//8	1824	1048	2005	2085	2138	2210	2280	2352	0.040	2427	2473	2617	2711	2780	2849	9662	3055	3096	3118	3186	3214	3253	3283	3300	3350	3394	3397	1040	25

Feature						FHOR	SGOA						P(BEHIND LOG JAM)		
Water Surface Elevation	199.03	199.05	00000	198.96	198 97	198.85	198 76	198.73	198.65	108 60	108 6	0.051	198.43	198.45	198.37
Bed Elevation	198.42	198.6	108 67	198.5	198.33	198.42	198.32	198.07	198.41	108 27	198.25	07.001	197.73	197.97	198.26
Composite Station	3545	3615	3660	3700	3722	3785	3842	3875	3900	3920	3945		2065	3963	3981

and a second second

ann a chailte Shean a chailte

									11111																nnn1	- Glide			bedrock	%0
																									0001	1.			boulder	%0
																									Ď			ate type	cobble	1%
																									001	Percent Item		Percent by substrate type	gravel	%17
								1	<u>6</u> 0	i a			×				·····									ercent Item		Percer	sand	8%
						(Reach 1)		Pebble Count,			<u>></u>	>		14	11/1	100	 				• • /	•			0	٠			silt/clay	14%
						Note: Camp Branch Reference Reach (Reach 1		Pet										ð	X						_				D95	30
		unt,				nch Refere					•••• •••• ••••									- 6								າan (mm)	D84	17
		Pebble Count				Camp Bra														•					0.1	ze (mm)		Size percent less than (mm)	D50	7.2
						Note:																			0.01	Particle Size (mm)		Size pe	D35	4.66
									100%	%06		80%	20%				<u>ال</u> ا	190 40%		tuə				ò					D16	0.610
	Run:	Glide:		#	# #	#		#	#	#	# #	#	#	# #	# #	# #	# #	# #	# #	# #	#	#	#	# #	#	#	#	#		
	Percent Run:	Percent Glide:	Total #	14.0	0.0	0.0	0.0	7.0	1.0	10.0	8.0	16.0	18.0	9.0	8.0	5.0	1.0	2.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100	100
			s (mm)	0.062	0.13	0.25	0.5	1	2	4	9	ω	11	16	22	32	45	64	06	128	180	256	362	512	1024	2048	4096		Weighted Count:	icle Count:
Int	50	50	Size Range (mm)	0	0.062	0.13	0.25	0.5	1	2	4	9	8	11	16	22	32	45	64	06	128	180	256	362	512	1024	2048		Weigh	True Total Particle Count:
Weighted Pebble Count	Percent Riffle:	Percent Pool:	Material	sitvclay	very fine sand	fine sand	medium sand	coarse sand	very coarse sand	very fine gravel	fine gravel	fine gravel	medium gravel	medium gravel	coarse gravel	coarse gravel	very coarse gravel	very coarse gravel	small cobble	medium cobble	large cobble	very large cobble	small boulder	small boulder	medium boulder	large boulder	very large boulder	bedrock		True

Rya (a constraint) An analasan danta

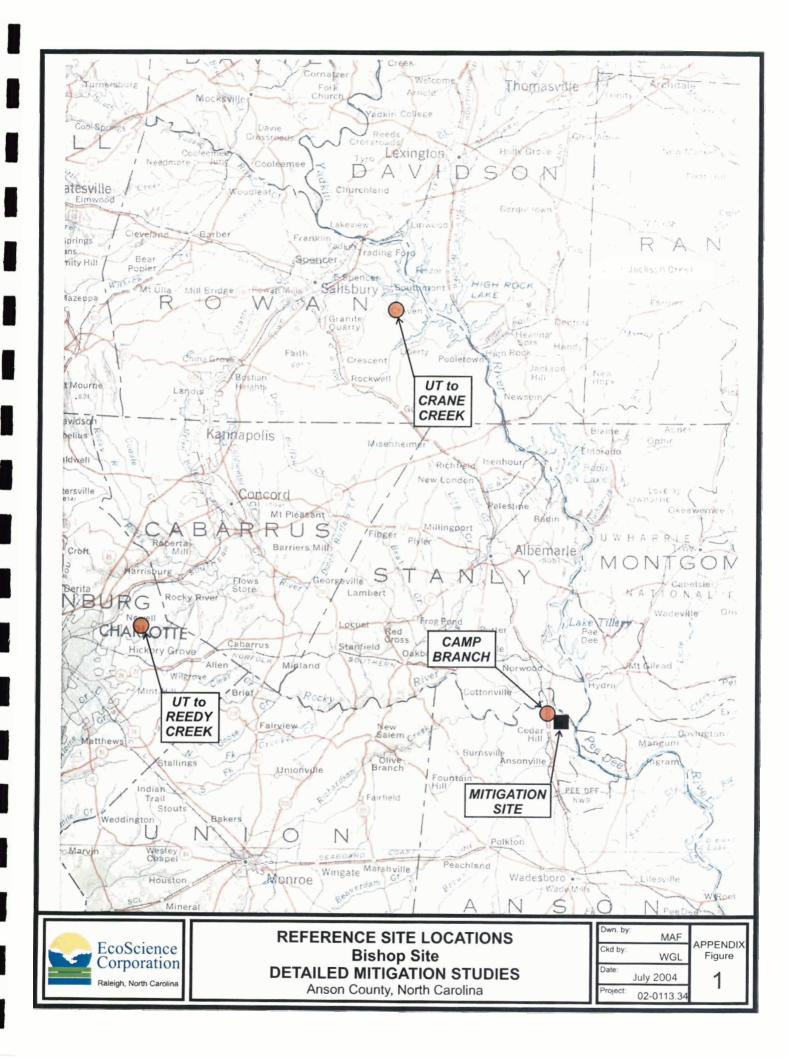
Percent Run: Percent Glide: Pebble Count,	(mm) T	0.062 16.7 # #	# # 0.0	0.25 3.8 # # Note: Camp Branch (Reach 2)	0.5 0.0 # #	1 7.7 # # Pebble Count,	0.0		16.7 # #		11 7.7 # # 70%	7.7 # #	2.6 # #	2.6 # #		0.0 # #	0.0 # # II 30% +	uə # # 0.0	# # 0.0	# Ē 10% 	# 0.0	# # 0.0				0.0 # # Particle Size (mm) 1.3 # #	0.0 # # Particle Size (mm)
Percent Run:	Total #	4	#	#	#	#	#	#	#	#	#	#	# #	# #	# #	# #	: # #	# #	# #	- # #	#	#	#	7	<u></u> ≢ 	* *	
20	ange				0.25 0.5	0.5 1		2 4				11 16			32 45			90 128					512 1024	1024 2048			
Percent Riffle:		silt/clay	very fine sand	fine sand	medium sand	coarse sand	very coarse sand	very fine gravel	fine gravel	fine gravel	medium gravel	medium gravel	coarse gravel	coarse gravel	very coarse gravel	very coarse gravel	small cobble	medium cobble	large cobble	very large cobble	small boulder	small boulder	medium boulder	large boulder	1	very large boulder	very large boulder bedrock

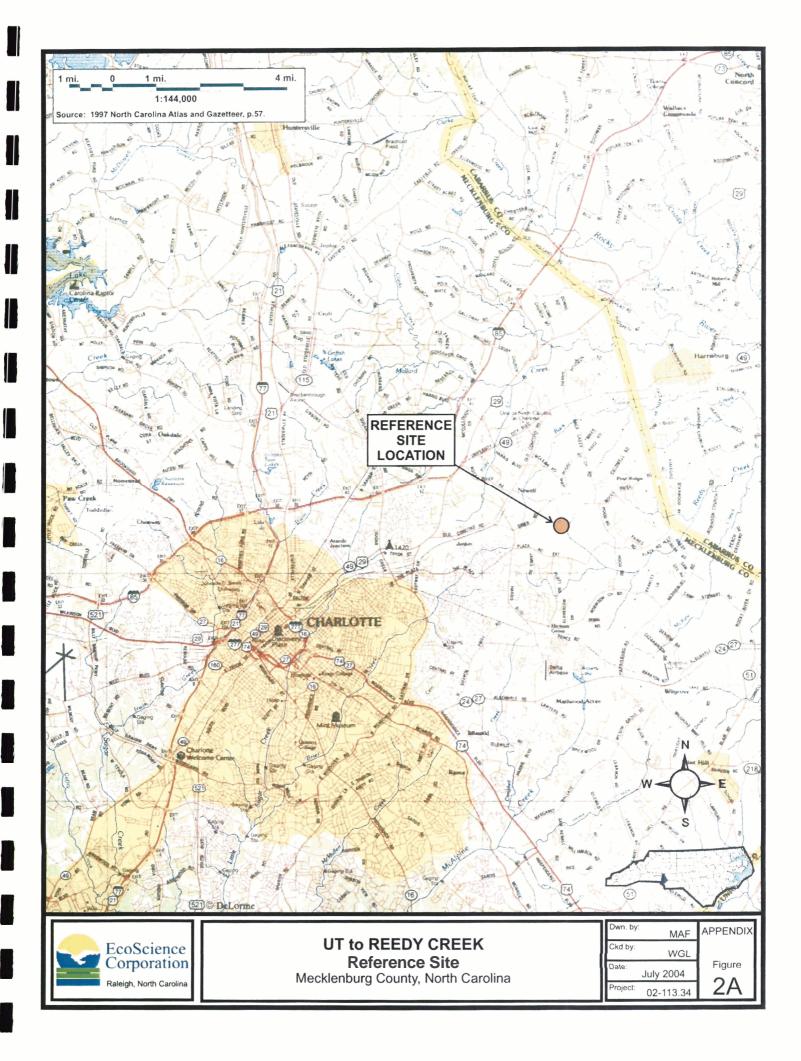
and some strange

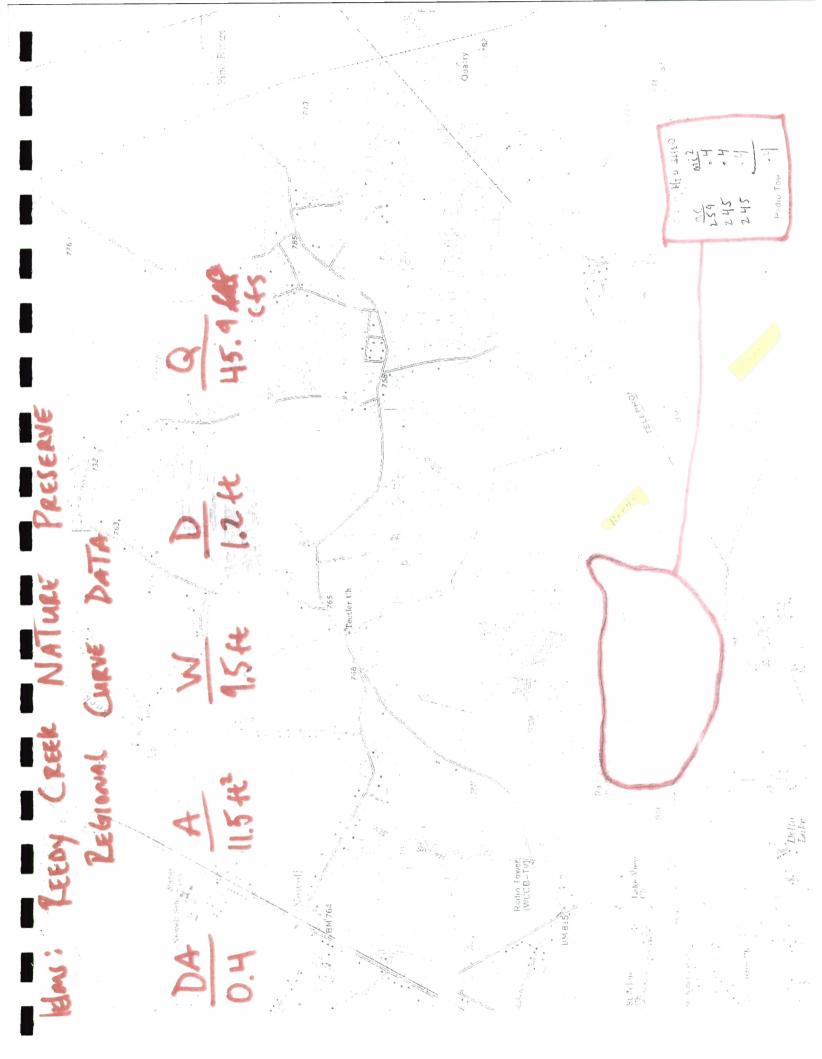
										111														00001	Glide			hedrock
								1			• •				-				 					2				houldor
								1																0001	- Pool -		ite type	
								1				111	111		111	111					-			001			Percent by substrate type	let term
								1		1	~	~	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1										Percent Item		Percen	
								Pebble Count, ·							×1111			/ 1				•		01	٠			
						3)		Pebl	1 1					-			<u>-</u>]					•	•	-				1
		int,				Note: Camp Branch (Reach 3)																					an (mm)	
		Pebble Count	***		1	Camp Brar				111				11211	1111									1.0	e (mm)		Size percent less than (mm)	1
						Note:									1				-					10.0	Particle Size (mm)		Size per	
									%00L	%06		80%	%02	1000	%00 ι	181 20%			н 1 30%	uəc	e k		- %0					
	Run:	3lide:		#	#	#	#			#	# #	# :	# # 1	# #	# #	# #	# #				# 4 # 4		#	#	#	#	#	Ĩ
	Percent Run:	Percent Glide:	Total #	13.8	0.0	0.0	0.0	0.0	2.5	1.3	0.0	7.5	5.0	6.3	7.5	8.8	7.5	5.0	0.0	1.3 1.3	5.00	0.0	0.0	0.0	0.0	0.0	32.5	
			(mm)	0.062	0.13	0.25	0.5	-	~	4	9	8	11	16	22	32	45	64	6	128	180	362	512	1024	2048	4096		
ut	50	50	Size Range	0	0.062	0.13	0.25	0.5	-	8	4	9	ø	++	16	22	32	45	64			256	362	512	1024	2048		
Weighted Pebble Count	Percent Riffle:	Percent Pool:	Material	silt/clay	very fine sand	fine sand	medium sand	coarse sand	very coarse sand	very fine gravel	fine gravel	fine gravel	medium gravel	medium gravel	coarse gravel	coarse gravel	very coarse grave	very coarse gravel	small cobble	medium cobble	large cobble	very large couble small boulder	small boulder	medium boulder	large boulder	very large boulder	bedrock	Value of the second sec

ng kanalan sana ana ana ana a Ang ang ang ang ang ang ang

-		-																												
													1 + + +			1111		1111		1 1 2 1 1				10000	00001				bedrock	4%
																				: I I I					2				boulder	%0
										11111111															5	Pool Run		ate type	cobble	%0
																1 1 1		111							5			Percent by substrate type	gravel	40%
								-						 				-						1 • •		Percent Item		Percen	sand	8%
		1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -				Reach)		Pebble Count,		N. I.		-W						F 1 1 1				•			2	٠			silt/clay	49%
		a second seco				Jpstream F		Peb		8						X	X		1 1 1			•		• • •	-				D95	15
		int,				oughfare (I																		•				an (mm)	D84	6
		Pebble Count			1	Note: Dulla Thoroughfare (Upstream Reach)							1111					1 1 1 1								e (mm)		Size percent less than (mm)	D50	#N/A
						Note:				-															0.01	Particle Size (mm)		Size per	D35	#N/A
									100%	%06		80%	20%		%09 ι	191 20%		190 95 94	н 11 30%		src Sol	Р. 10%	200	0 2					D16	#N/A
	:un:	lide:		# #	# #	#	#	#	#	#	# #	#	#	# #	*	# #	# #	#	# #	# #	# #	# #	#	# #	# #	# #	# #	#		
	Percent Run:	Percent Glide:	Total #	48.9	0.0	0.0	0.0	0.0	7.5	8.5	1.2	12.1	9.8	4.9	1.2	0.0	1.2	1.2	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0	3.6	100	62
			(mm)	0.062	0.13	0.25	0.5	1	0	4	9	8	11	16	22	32	45	64	06	128	180	256	362	512	1024	2048	4096		Weighted Count:	icle Count:
٦t	50	50	Size Range (mm)	0	0.062	0.13	0.25	0.5		2	4	6	8	11	16	22	32	45	64	90	128	180	256	362	512	1024	2048		Weigh	True Total Particle Count:
Weighted Pebble Count	Percent Riffle:	Percent Pool:	Material S	silt/clay	very fine sand	fine sand	medium sand	coarse sand	very coarse sand	very fine gravel	fine gravel	fine gravel	medium gravel	medium gravel	coarse gravel	coarse gravel	very coarse gravel	very coarse gravel	small cobble	medium cobble	large cobble	very large cobble	small boulder	small boulder	medium boulder	large boulder	very large boulder	bedrock		Tru

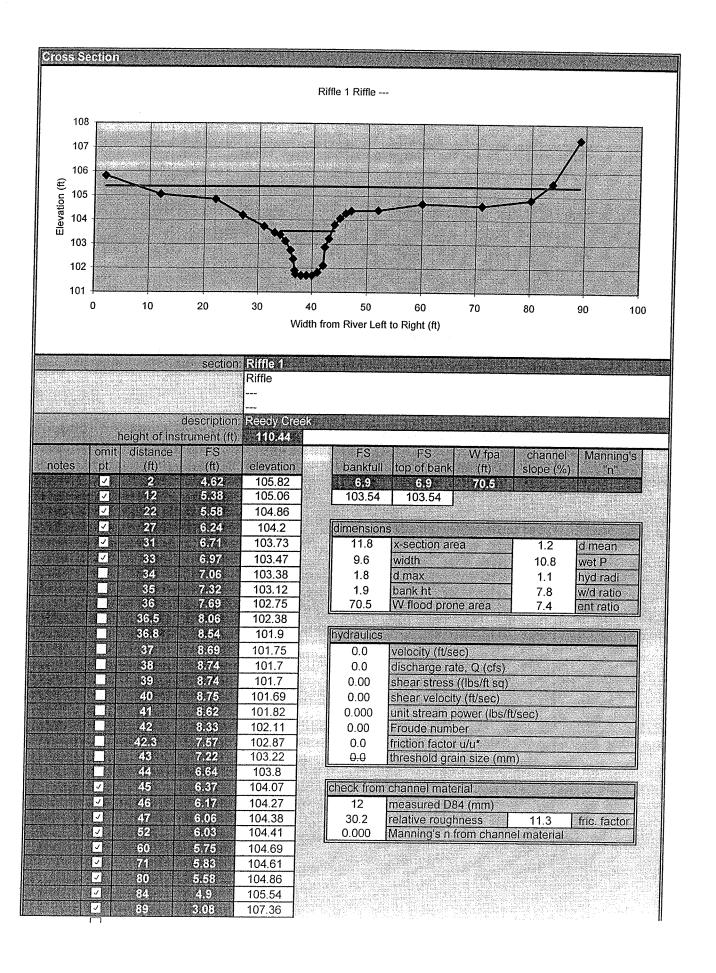

gradien een een de ee Barge skoer noeklijste


golena jan nuntre L Beyesterkeproteerk


APPENDIX D

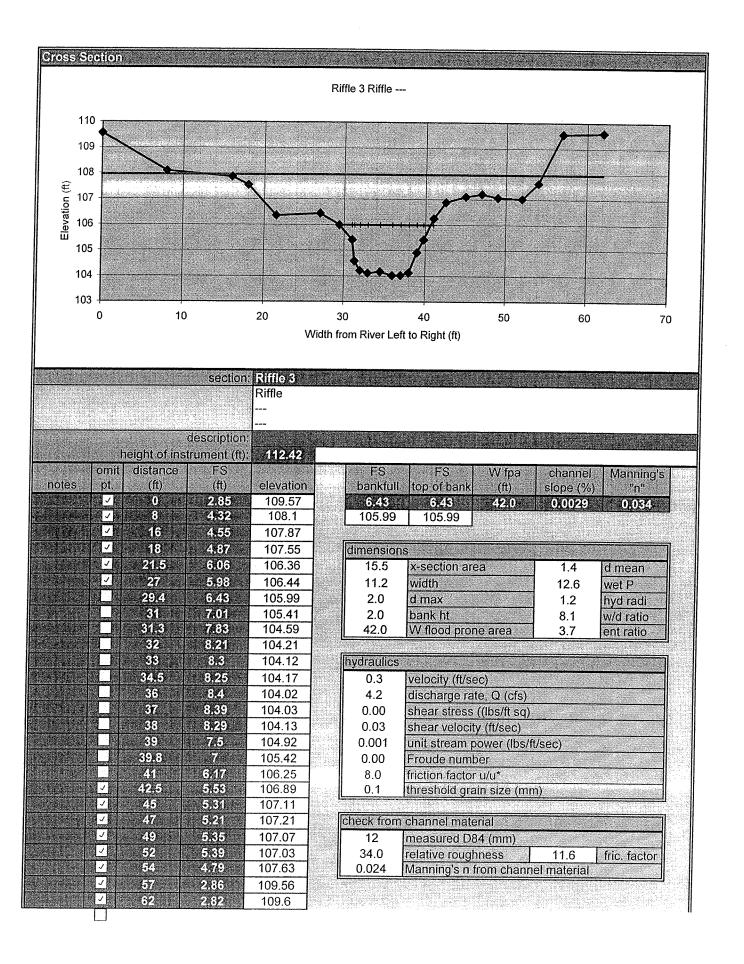
\$

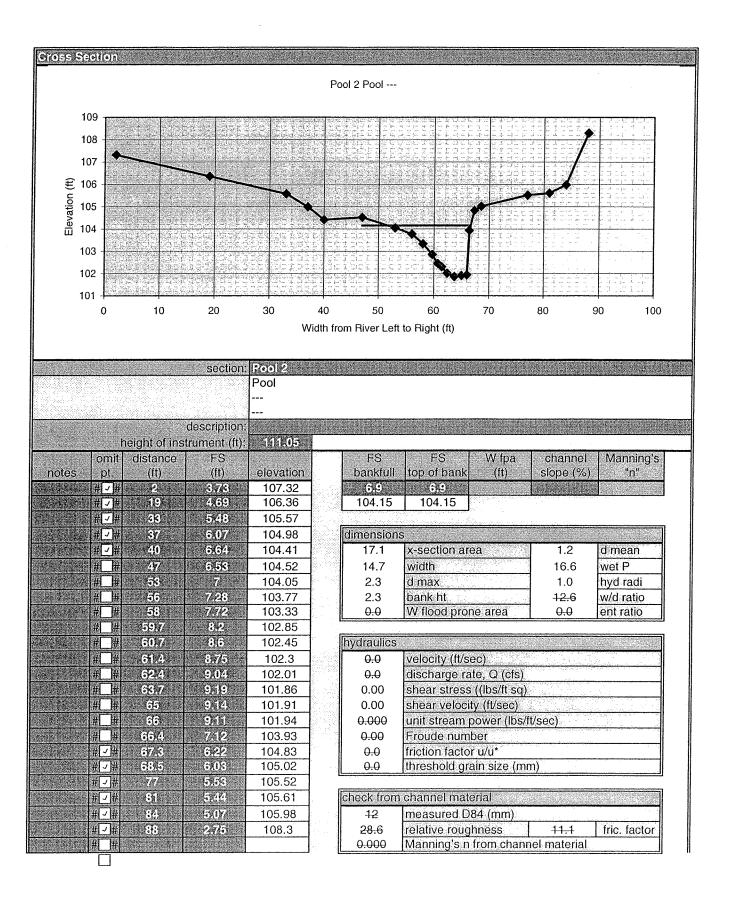
REFERENCE DATA



Helms: REEDY CREEK NATURE PARK REFERENCE DIMENSION

RIFFIES

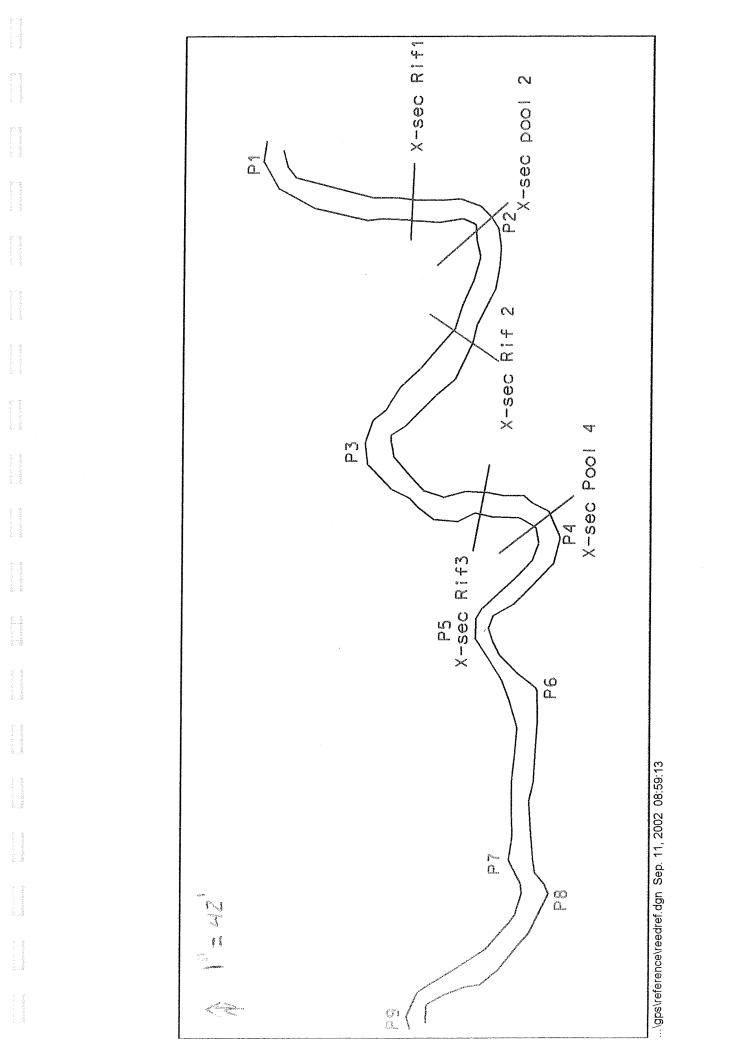

generation of the second secon	A DREL	Mahll	D ANE	Purak		41	EN. RATIO			Durk/Dave	STRAM		
	11.8	9.6	1.2	1.8 2.2	8	70,5 58	7.y 5.6	1.8	1,0 1,2	1.5	E E		
generative g	15,5	11.2	1.4	2.2	8	42	3.7	2.0	1.0	1.6	Ē		
AVE	14.8	10.4	1.4	2.1		51,8	5.6	2.1	L1 .	1.4	· ·		
, joind	15.5	10.4	1.4	2.2	8	58	5.6	2.0	1.5	.4			
ggy ago to starting and an an an an an													
gyteled angelation Secolar Angela												÷	
7001	s							1					
And	T		17	A 1.1		<u>M</u> 15	¥ 1.7	Dave 1.2	ş	Pmax Z. 3	<u>LBH</u> 2.3	BHR 1.0	
service H			18	8		13	7	1.4		2,2	2.3	1. 0	
VE			18	0		14,	2	1.3		2.3	2.3	1.0	

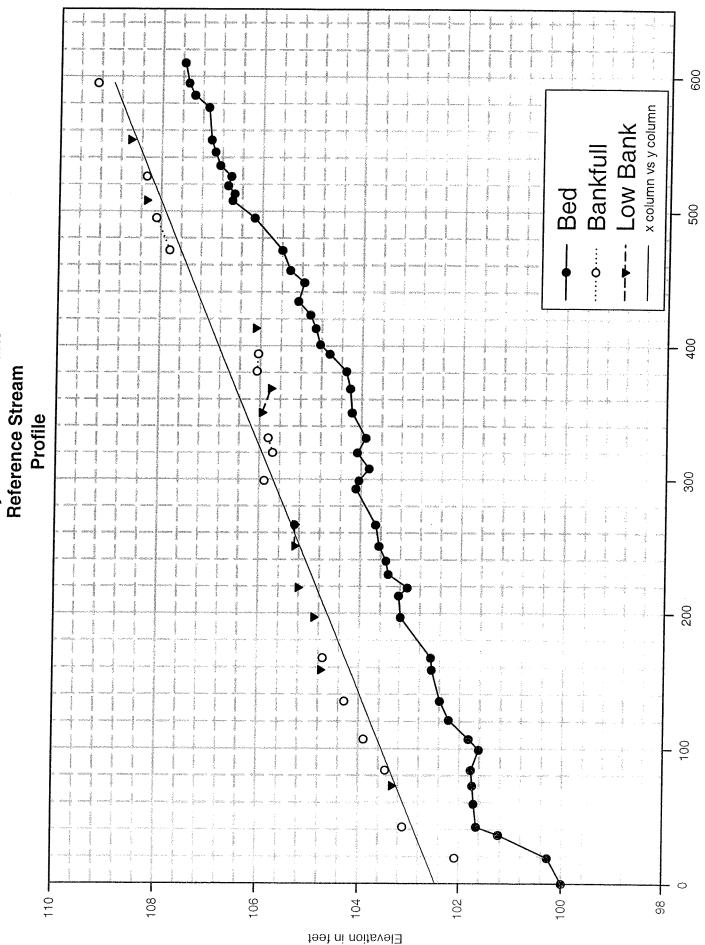


					Ri	ffle 2 Riffle	-				
108											
107 -		<u></u>								1	
_{ଙ୍କ} 106 -		•		\sim							
Elevation (ft)					*			1			
ilevat						<u> </u>		7			
^ш 104 -							4				
103 -											
102 -					1000						
0)	10) .	20	3		40	50	6	0	70
					Width fr	om River Lef	t to Right (ft)				
			section	Riffle 2							
				Riffle							
			description	Constrained and the second				-ELT-FL			
			trument (ft)	. 111.72							
	omit a	distance	FS								
notes	ot.	(ft)		elevation	,	FS	FS top of bag	W fpa	channe clane (8		
notes	pt. ✓ n at	(ft) 7	(ft)	elevation 106.52	<u>1</u>	bankfull	top of ban	k (ft)	channe slope (%		
notes		000740707070711111107177-001110010107-0-0		elevation 106.52 106.4	<u>1</u>						
notes		7	(ft) 5.2	106.52		bankfull 6.95	top of ban 6.59	k (ft)			
	✓ ✓	7 18	(ft) 5.2 5.32	106.52 106.4		bankfull 6.95	top of ban 6.59 105.13	k (ft)			
	✓ ✓ ✓	7 18 26 30 33	(ft) 5.2 5.32 6.1	106.52 106.4 105.62		bankfull 6.95 104.77	top of ban 6.59 105.13	k (ft) 58.0		%) "n' 	
		7 18 26 30 33 34	(ft) 5.2 5.32 6.1 6.62 6.51 6.59	106.52 106.4 105.62 105.1 105.21 105.13		bankfull 6.95 104.77 dimension	top of ban 6.59 105.13 s	k (ft) 58.0	slope (%		
		7 18 26 30 33 34 35	(ft) 5.2 5.32 6.1 6.62 6.51 6.59 6.95	106.52 106.4 105.62 105.1 105.21 105.13 104.77	n 	bankfull 6.95 104.77 dimension 17.1 10.4 2.2	top of ban 6.59 105.13 s x-section a width d max	k (ft) 58.0	slope (* 1.6	6) "n'	
		7 18 26 30 33 34 35 36	(ft) 5.2 5.32 6.1 6.62 6.51 6.59 6.95 7.45	106.52 106.4 105.62 105.1 105.21 105.13 104.77 104.27		bankfull 6.95 104.77 dimension 17.1 10.4 2.2 2.6	top of ban 6.59 105.13 s x-section a width d max bank ht	k (ft) 58.0	1.6 1.3 1.3 1.6 12.7 1.3 6.4	6) "n' d mear wet P hyd rad w/d rati	
		7 18 26 30 33 34 35 36 36.2	(ft) 5.2 5.32 6.1 6.62 6.51 6.59 6.95 7.45 8.74	106.52 106.4 105.62 105.1 105.21 105.13 104.77 104.27 102.98		bankfull 6.95 104.77 dimension 17.1 10.4 2.2	top of ban 6.59 105.13 s x-section a width d max	k (ft) 58.0	slope (9 1.4 1.6 12.7 1.3	6) "n' d mean wet P hyd rad	
		7 18 26 30 33 34 35 36 36.2 37	(ft) 5.2 5.32 6.1 6.62 6.51 6.59 6.95 7.45 8.74 8.93	106.52 106.4 105.62 105.1 105.21 105.13 104.77 104.27 102.98 102.79		bankfull 6.95 104.77 dimension 17.1 10.4 2.2 2.6 58.0	top of ban 6.59 105.13 s x-section a width d max bank ht	k (ft) 58.0	1.6 1.3 1.3 1.6 12.7 1.3 6.4	6) "n' d mear wet P hyd rad w/d rati	
		7 18 26 30 33 34 35 36 36.2 37 38	(ft) 5.2 5.32 6.1 6.62 6.51 6.59 6.95 7.45 8.74 8.93 8.98	106.52 106.4 105.62 105.1 105.21 105.13 104.77 104.27 102.98 102.79 102.74		bankfull 6.95 104.77 dimension 17.1 10.4 2.2 2.6 58.0 hydraulics	top of ban 6.59 105.13 s x-section a width d max bank ht W flood pr	k (ft) 58.0 area one area	1.6 1.3 1.3 1.6 12.7 1.3 6.4	6) "n' d mear wet P hyd rad w/d rati	
		7 18 26 30 33 34 35 36 36 2 37 38 40	(f) 5.2 5.32 6.1 6.62 6.51 6.59 6.95 7.45 8.74 8.93 8.98 9.13	106.52 106.4 105.62 105.1 105.21 105.13 104.77 104.27 102.98 102.79 102.74 102.59		bankfull 6.95 104.77 dimension 17.1 10.4 2.2 2.6 58.0 hydraulics 0.0	top of ban 6.59 105.13 s x-section a width d max bank ht W flood pr velocity (ft	k (ft) 58.0 area one area	1.6 1.3 1.3 1.6 12.7 1.3 6.4	6) "n' d mear wet P hyd rad w/d rati	
		7 18 26 30 33 34 35 36 36.2 37 38 40 42	(ft) 5.2 5.32 6.1 6.62 6.51 6.59 6.95 7.45 8.74 8.93 8.98 9.13 9.16	106.52 106.4 105.62 105.1 105.21 105.13 104.77 104.27 102.98 102.79 102.74 102.59 102.56		bankfull 6.95 104.77 dimension 17.1 10.4 2.2 2.6 58.0 hydraulics 0.0 0.0	top of ban 6.59 105.13 x-section a width d max bank ht W flood pr velocity (ft discharge	k (ft) 58.0 area one area (sec) rate, Q (cfs)	slope (9	6) "n' d mear wet P hyd rad w/d rati	
		7 18 26 30 33 34 35 36 36.2 37 38 40 42 43	(ft) 5.2 5.32 6.1 6.62 6.51 6.59 6.95 7.45 8.74 8.93 8.98 9.13 9.16 8.99	106.52 106.4 105.62 105.1 105.21 105.13 104.77 104.27 102.98 102.79 102.74 102.59 102.56 102.73		bankfull 6.95 104.77 dimension 17.1 10.4 2.2 2.6 58.0 hydraulics 0.0 0.0 0.00	top of ban 6.59 105.13 x-section a width d max bank ht W flood pr velocity (ft, discharge shear stres	k (ft) 58.0 area one area 'sec) rate, Q (cfs) as ((lbs/ft sq)	slope (9	6) "n' d mear wet P hyd rad w/d rati	
		7 18 26 30 33 34 35 36 36.2 37 38 40 42 43 43.8	(ft) 5.2 5.32 6.1 6.62 6.51 6.59 6.95 7.45 8.74 8.93 8.98 9.13 9.16 8.99 8.67	106.52 106.4 105.62 105.1 105.21 105.13 104.77 104.27 102.98 102.79 102.74 102.59 102.56 102.73 103.05		bankfull 6.95 104.77 dimension 17.1 10.4 2.2 2.6 58.0 hydraulics 0.0 0.0 0.00 0.00 0.00	top of ban 6.59 105.13 x-section a width d max bank ht W flood pr velocity (fl/ discharge shear stres shear velo	k (ft) 58.0 58.0 area one area 'sec) rate, Q (cfs) as ((lbs/ft sq) city (ft/sec)	slope (9 1.6 12.7 1.3 6.4 5.6	6) "n' d mear wet P hyd rad w/d rati	
		7 18 26 30 33 34 35 36 36.2 37 38 40 42 43 43.8 44.1	(ft) 5.2 5.32 6.1 6.62 6.51 6.59 6.95 7.45 8.74 8.93 8.98 9.13 9.16 8.99 8.67 7.7	106.52 106.4 105.62 105.1 105.21 105.13 104.77 104.27 102.98 102.79 102.74 102.59 102.56 102.73 103.05 104.02		bankfull 6.95 104.77 dimension 17.1 10.4 2.2 2.6 58.0 hydraulics 0.0 0.00 0.00 0.00 0.00 0.000	top of ban 6.59 105.13 x-section a width d max bank ht W flood pr velocity (fl discharge shear stres shear velo unit stream	k (ft) 58.0 58.0 area one area 'sec) rate, Q (cfs) as ((lbs/ft sq) city (ft/sec) t power (lbs/	slope (9 1.6 12.7 1.3 6.4 5.6	6) "n' d mear wet P hyd rad w/d rati	
		7 18 26 30 33 34 35 36 36.2 37 38 40 42 43 43.8	(ft) 5.2 5.32 6.1 6.62 6.51 6.59 6.95 7.45 8.74 8.93 8.98 9.13 9.16 8.99 8.67	106.52 106.4 105.62 105.1 105.21 105.13 104.77 104.27 102.98 102.79 102.74 102.59 102.56 102.73 103.05 104.02 104.8		bankfull 6.95 104.77 dimension 17.1 10.4 2.2 2.6 58.0 hydraulics 0.0 0.00 0.00 0.00 0.000 0.000 0.000	top of ban 6.59 105.13 x-section a width d max bank ht W flood pr velocity (ft discharge shear stress shear veloo unit stream Froude nui	k (ft) 58.0 58.0 area one area (sec) rate, Q (cfs) as ((lbs/ff sq) city (ft/sec) 1 power (lbs/ nber	slope (9 1.6 12.7 1.3 6.4 5.6	6) "n' d mear wet P hyd rad w/d rati	
		7 18 26 30 33 34 35 36 2 37 38 40 42 43 43 8 40 42 43 8 40 42 43 43.8 44.1 45.5 46 47	(ft) 5.2 6.1 6.62 6.51 6.59 6.95 7.45 8.74 8.93 8.93 8.98 9.13 9.16 8.99 8.67 7.7 6.92	106.52 106.4 105.62 105.1 105.21 105.13 104.77 104.27 102.98 102.79 102.74 102.59 102.56 102.73 103.05 104.02		bankfull 6.95 104.77 dimension 17.1 10.4 2.2 2.6 58.0 hydraulics 0.0 0.00 0.00 0.00 0.00 0.000	top of ban 6.59 105.13 x-section a width d max bank ht W flood pr velocity (ft discharge shear stress shear velo unit stream Froude nur friction fact	k (ft) 58.0 58.0 area one area (sec) rate, Q (cfs) as ((lbs/ff sq) city (ft/sec) 1 power (lbs/ nber	slope (9	6) "n' d mear wet P hyd rad w/d rati	
		7 18 26 30 33 34 35 36 36 2 37 38 40 42 43 8 40 42 43 8 40 42 43 8 40 42 43 8 40 42 43 8 44.1	(f) 5.2 5.32 6.1 6.62 6.51 6.59 6.95 7.45 8.74 8.93 8.98 9.13 9.16 8.99 8.67 7.7 6.92 6.6 6.21 5.86	106.52 106.4 105.62 105.1 105.13 104.77 104.27 102.98 102.79 102.74 102.59 102.56 102.73 103.05 104.02 104.8 105.12		bankfull 6.95 104.77 climension 17.1 10.4 2.2 2.6 58.0 hydraulics 0.0 0.00 0.00 0.00 0.00 0.000 0.000 0.000 0.00	top of ban 6.59 105.13 x-section a width d max bank ht W flood pr velocity (ft discharge shear stress shear velo unit stream Froude nur friction fact	k (ft) 58.0 58.0 area one area (sec) rate, Q (cfs) as ((lbs/ft sq) city (ft/sec) 1 power (lbs/ mber or u/u*	slope (9	6) "n' d mear wet P hyd rad w/d rati	
		7 18 26 30 33 34 35 36 36.2 37 38 40 42 43 43.8 44.1 45.5 46 47 49 53	(ft) 5.2 5.32 6.1 6.62 6.51 6.59 6.95 7.45 8.74 8.93 8.98 9.13 9.16 8.99 8.67 7.7 6.92 6.6 6.21 5.86 5.71	106.52 106.4 105.62 105.1 105.21 105.13 104.77 104.27 102.98 102.79 102.74 102.59 102.56 102.73 103.05 104.02 104.8 105.12 105.51		bankfull 6:95 104.77 dimension 17.1 10.4 2.2 2.6 58.0 hydraulics 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.0	top of ban 6.59 105.13 x-section a width d max bank ht W flood pr velocity (ft discharge shear stress shear velo unit stream Froude nur friction fact	k (ft) 58.0 58.0 58.0 58.0 area one area /sec) rate, Q (cfs) as ((lbs/ft sq) city (ft/sec) t power (lbs/ nber or u/u* irain size (m	slope (9	6) "n' d mear wet P hyd rad w/d rati	
		7 18 26 30 33 34 35 36 36.2 37 38 40 42 43 43.8 44.1 45.5 46 47 49 53 59	 (ft) 5.2 5.32 6.1 6.62 6.51 6.59 6.95 7.45 8.74 8.93 8.98 9.13 9.16 8.99 8.67 7.7 6.92 6.6 6.21 5.86 5.71 5.31 	106.52 106.4 105.62 105.1 105.21 105.13 104.77 104.27 102.98 102.79 102.74 102.56 102.73 103.05 104.02 104.8 105.12 105.51 105.86 106.41		bankfull 6:95 104.77 dimension 17.1 10.4 2.2 2.6 58.0 hydraulics 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.0	top of ban 6.59 105.13 x-section a width d max bank ht W flood pr velocity (ft/ discharge shear stress shear veloo unit stream Froude nur friction fact threshold g	k (ft) 58.0 58.0 area one area 'sec) rate, Q (cfs) as ((lbs/ft sq) city (ft/sec) n power (lbs/ nber or u/u* irain size (m aterial	slope (9	6) "n' d mear wet P hyd rad w/d rati	
		7 18 26 30 33 34 35 36 36.2 37 38 40 42 43 43.8 44.1 45.5 46 47 49 53	(ft) 5.2 5.32 6.1 6.62 6.51 6.59 6.95 7.45 8.74 8.93 8.98 9.13 9.16 8.99 8.67 7.7 6.92 6.6 6.21 5.86 5.71	106.52 106.4 105.62 105.1 105.21 105.13 104.77 104.27 102.98 102.79 102.56 102.73 103.05 104.02 104.8 105.51 105.51 105.86 106.01		bankfull 6.95 104.77 dimension 17.1 10.4 2.2 2.6 58.0 hydraulics 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.0	top of ban 6.59 105.13 x-section a width d max bank ht W flood pr velocity (fl discharge shear stres shear velo unit stream Froude nur friction fact threshold g channel ma measured I relative rou	k (ft) 58.0 58.0 area one area 'sec) rate, Q (cfs) as ((lbs/ft sq) city (ft/sec) t power (lbs/ nber or u/u* irain size (m aterial D84 (mm)	slope (9 1.6 12.7 1.3 6.4 5.6 ft/sec) m)	6) "n" d mean wet P hyd rad w/d rati ent ratio	

iquara makangi 1 Ukrasarah ngi

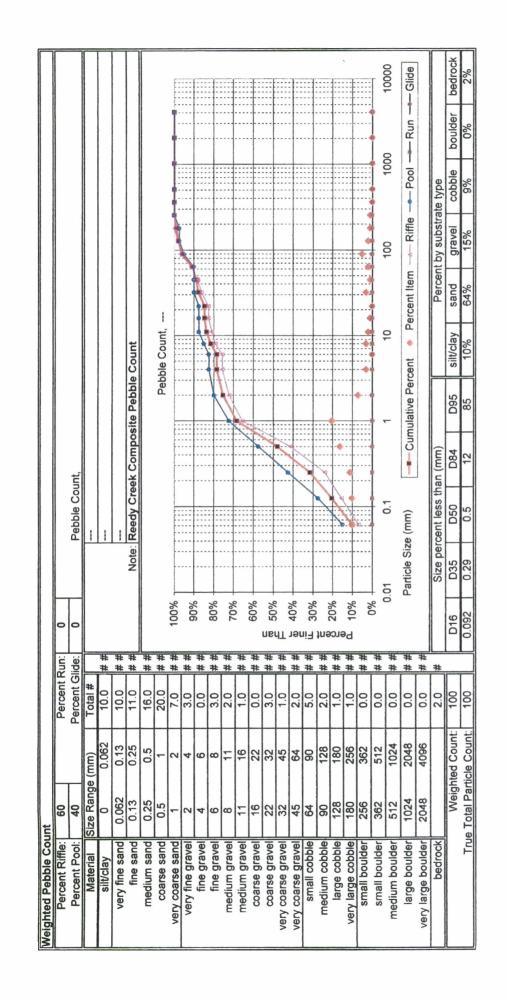
Protection and solid and the protection of the p

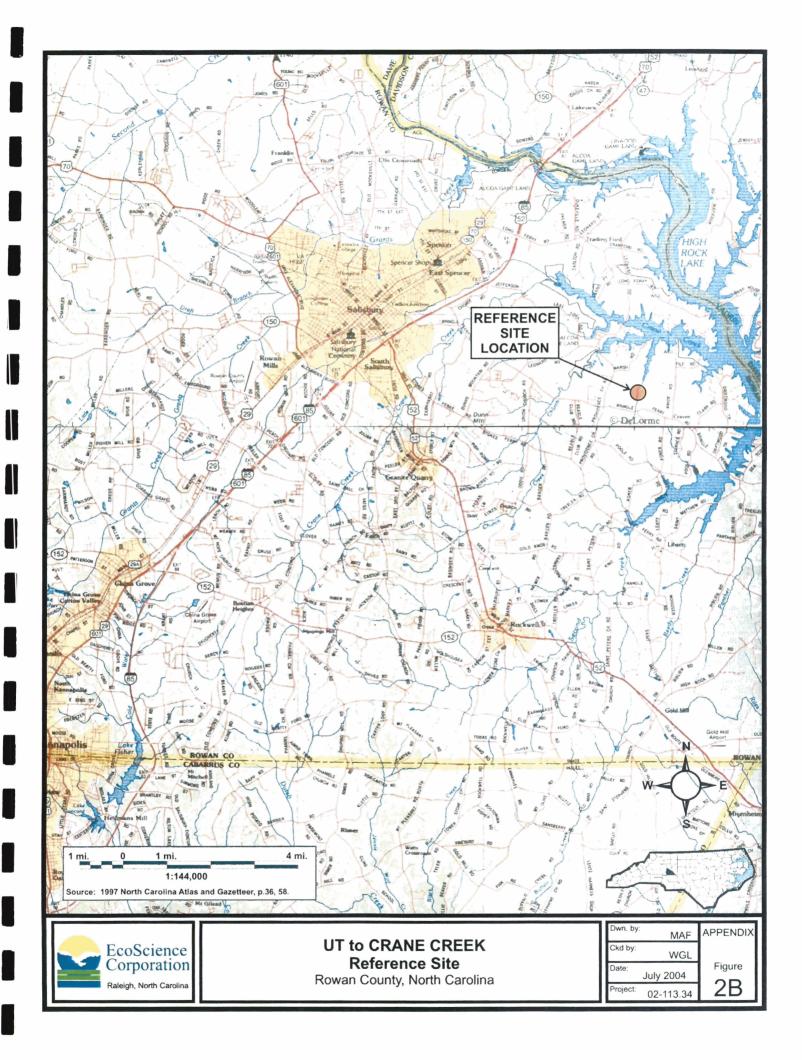


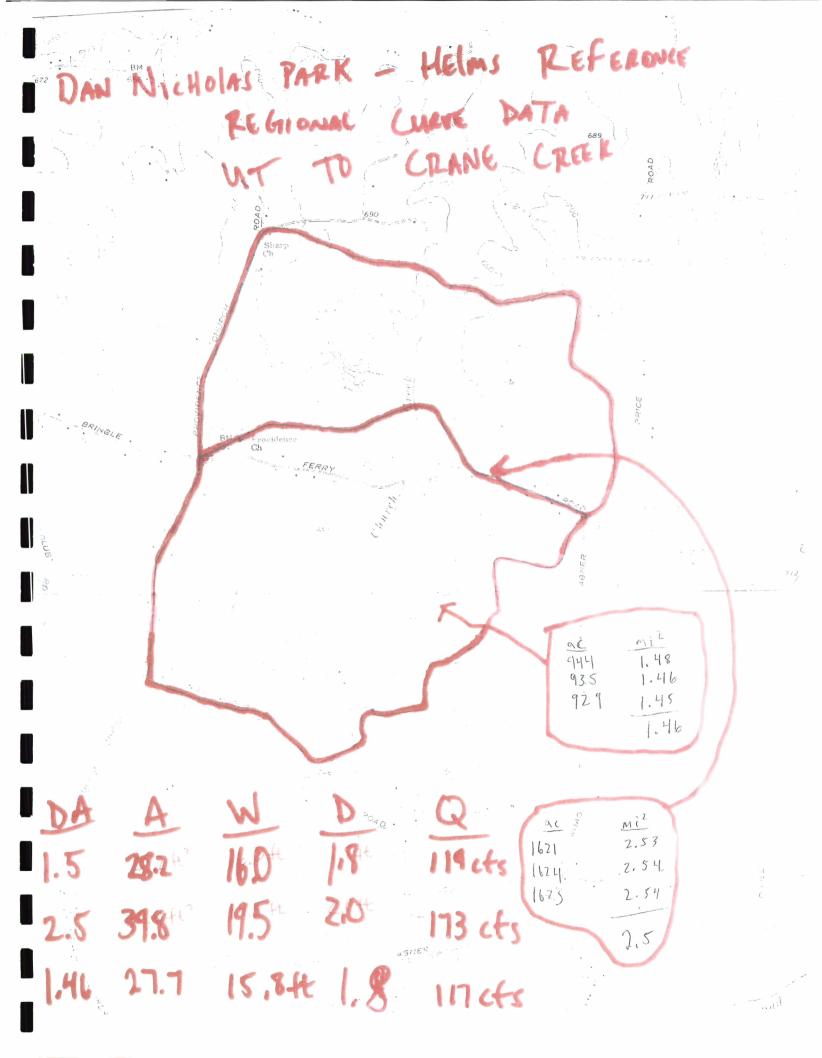

eres entres entres entres entres establismes establisme

and a state of the state of the

				Po	ool 4 Pool				
109 T								The Ar is Article internet	
108.5	-								
108 -			\leq						
107.5 -									4
€ 107 f	CARE NO.	Salar de l							
() 106.5 + 106.5 + 105.5 + 105.5 +		213350							4
8 106 -									
22									
105 -							X		
104.5									
104		112 H + H + H							
103.5 0	5	10		20	25	30	35	40	45
•						eft to Right (ft)			
			Pool 						
	height of	descriptior instrument (ft)		1			•		
or	nit distand	ce FS			· • • • • • • • • • • • • • • • • • • •				
otoc n			elevation		FS	FS top of bank	W fpa	channe	
	t. (ft)	(ft)	elevation	-	bankfull	top of bank	W fpa (ft)	channe slope (%	
	t. (ft)	(ft) 5.2	elevation 108.31 108.11						
199623 #[- 19953 #[-	t. (ft) /_#2	(ft) 5.2	108.31		bankfull 7,725	top of bank			
199623 #[- 19953 #[-	t. (ft) # 2 # 7 4 12	(ft) 5.2 5.4	108.31 108.11		bankfull 7,725	top of bank 6.16 107.35			
# - # - # -	1. (11) 4 # 2 7 # 7 4 . 12 4 . 18	((t) 5.2 5.4 5.53 6.17 6.61	108.31 108.11 107.98		bankfull 7.25 106.26	top of bank 6.16 107.35	(ft)		
# # # # # #	I. (ft) I.H. 2 I.H. 7 I.H. 12 I.H. 18 I.H. 23 I.H. 27	((t) 5.2 5.4 5.53 6.17 6.61 6.94	108.31 108.11 107.98 107.34 106.9 106.57		bankfull 7.25 106.26 dimension 18.8 13.7	top of bank 6.16 107.35	(ft)	slope (%	6) "'N"
	I. (II) III 2 III 7 III 12 III 18 III 23 III 27 III 30	(lt) 5.2 5.4 5.53 6.17 6.61 6.94 7.3	108.31 108.11 107.98 107.34 106.9 106.57 106.21		bankfull 7.25 106.26 dimension 18.8 13.7 2.2	top of bank 6.16 107.35 x-section ar width d max	(ft)	slope (%	6) "n" d mean wet P hyd radi
は、日本 日本 一部 一部 一部 一部 一部 一部 一部 一部 一部 一部	I. (11) III 2 III 7 III 12 III 18 IIII 23 IIII 27 IIII 30 IIIII 31	(lt) 5.2 5.4 5.53 6.17 6.61 6.94 7.3 7.52	108.31 108.11 107.98 107.34 106.9 106.57 106.21 105.99		bankfull 7.25 106.26 dimension 18.8 13.7 2.2 3.3	top of bank 6.16 107.35 s x-section ar width d max bank ht	(ft) ea	1.4 1.5.8 1.2 10.0	6) ""n" d mean wet P hyd radi w/d ratio
	t. ((t) # 2 # 7 # 12 # 18 # 23 # 27 # 30 # 31 # 32.8	(II) 5.2 5.4 5.53 6.17 6.61 6.94 7.3 7.52 7.69	108.31 108.11 107.98 107.34 106.9 106.57 106.21 105.99 105.82		bankfull 7.25 106.26 dimension 18.8 13.7 2.2	top of bank 6.16 107.35 s x-section ar width d max	(ft) ea	slope (%	6) "n" d mean wet P hyd radi
	I. (II) II 2 II 7 II 12 II 18 II 23 II 23 II 23 II 30 II 31 II 32.8 II 34	((t) 5.2 5.4 5.53 6.17 6.61 6.94 7.3 7.52 7.69 8.14	108.31 108.11 107.98 107.34 106.9 106.57 106.21 105.99 105.82 105.37		bankfull 7.25 106.26 dimension 18.8 13.7 2.2 3.3 0.0	top of bank 6.16 107.35 x-section ar width d max bank ht W flood pro	(ft) ea	1.4 1.5.8 1.2 10.0	6) ""n" d mean wet P hyd radi w/d ratio
	I. (II) II 2 II 7 II 12 II 18 II 23 II 23 II 23 II 23 II 33 II 31 II 32.8 II 34 II 35	(II) 5.2 5.4 5.53 6.17 6.61 6.94 7.3 7.52 7.69 8.14 8.45	108.31 108.11 107.98 107.34 106.9 106.57 106.21 105.99 105.82 105.37 105.06		bankfull 7.25 106.26 dimension 18.8 13.7 2.2 3.3 0.0 hydraulics	top of bank 6.16 107.35 x-section ar width d max bank ht W flood pro	(ft) ea ne area	1.4 1.5.8 1.2 10.0	6) ""n" d mean wet P hyd radi w/d ratio
	I. ((1) / # 2 / # 2 / # 12 / # 12 / # 18 / # 23 / # 23 / # 23 / # 23 / # 23 / # 30 / # 31 / # 32.8 / # 34 / # 35.5	((t) 5.2 5.4 5.53 6.17 6.61 6.94 7.3 7.52 7.69 8.14 8.45 8.81	108.31 108.11 107.98 107.34 106.9 106.57 106.21 105.99 105.82 105.37 105.06 104.7		bankfull 7,25 106.26 dimension 18.8 13.7 2.2 3.3 0.0 hydraulics 0.0	top of bank 6.16 107.35 x-section ar width d max bank ht W flood pro	(ft) ea ne area ec)	1.4 1.5.8 1.2 10.0	6) ""n" d mean wet P hyd radi w/d ratio
	I. (II) II 2 II 7 II 12 II 18 II 23 II 23 II 23 II 23 II 33 II 31 II 32.8 II 34 II 35	((t) 5.2 5.4 5.53 6.17 6.61 6.94 7.3 7.52 7.69 8.14 8.45 8.81	108.31 108.11 107.98 107.34 106.9 106.57 106.21 105.99 105.82 105.37 105.06		bankfull 7.25 106.26 dimension 18.8 13.7 2.2 3.3 0.0 hydraulics	top of bank 6.16 107.35 x-section ar width d max bank ht W flood pro	(ft) ea ne area ec) ate, Q (cfs)	1.4 15.8 1.2 10.0 0.0	6) "In" d mean wet P hyd radi w/d ratio
	I. ((1) I I	((t) 5.2 5.4 5.53 6.17 6.61 6.94 7.3 7.52 7.69 8.14 8.45 8.81 9.02	108.31 108.11 107.98 107.34 106.9 106.57 106.21 105.39 105.37 105.06 104.7 104.49		bankfull 7.25 106.26 dimension 18.8 13.7 2.2 3.3 0.0 hydraulics 0.0 0.0	top of bank 6.16 107.35 x-section ar width d max bank ht W flood pro	(ft) ea ne area ec) ate, Q (cfs) s ((lbs/ft sq)	1.4 15.8 1.2 10.0 0.0	6) "In" d mean wet P hyd radi w/d ratio
	I. ((1) # 2 # 2 # 12 # 12 # 18 # 23 # 23 # 23 # 23 # 30 # 31 # 32.8 # 34 # 35.5 # 36.5 # 37 # 39 # 40	((t) 5.2 5.4 5.53 6.17 6.61 6.94 7.3 7.52 7.69 8.14 8.45 8.81 9.02 9.36 9.44 9.42	108.31 108.11 107.98 107.34 106.9 106.57 106.21 105.99 105.37 105.06 104.7 104.49 104.15		bankfull 7,-25 106.26 dimension 18.8 13.7 2.2 3.3 0.0 hydraulics 0.0 0.00	top of bank 6.16 107.35 x-section ar width d max bank ht W flood pro	(ft) ea ne area ec) ate, Q (cfs) s ((lbs/ft sq) ity (ft/sec)	slope (%	6) "In" d mean wet P hyd radi w/d ratio
	I. ((1) II 2 II 7 II 12 II 18 II 28 II 28 II 28 II 28 II 28 II 30 II 31 II 32.8 II 35.5 II 35.5 II 37 II 39 II 40 II 41	(it) 5.2 5.4 5.53 6.17 6.61 6.94 7.3 7.52 7.69 8.14 8.45 8.81 9.02 9.36 9.44 9.42 9.42	108.31 108.11 107.98 107.34 106.9 106.57 106.21 105.99 105.82 105.37 105.06 104.7 104.49 104.07 104.09 104.09		bankfull 7.25 106.26 dimension 18.8 13.7 2.2 3.3 0.0 hydraulics 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.0	top of bank 6.16 107.35 x-section ar width d max bank ht W flood pro velocity (ft/s discharge ra shear stress shear veloc unit stream Froude num	(ft) ea ne area ec) ate, Q (cfs) s ((lbs/ft sq) ity (ft/sec) power (lbs/ iber	slope (%	6) "In" d mean wet P hyd radi w/d ratio
	I. (II) II 2 II 7 II 12 II 18 II 23 II 31 II 32.8 II 35.5 II 35.5 II 36.5 II 36.5 II 39 II 40 II 41 II 42.4	(it) 5.2 5.4 5.53 6.17 6.61 6.94 7.3 7.52 7.69 8.14 8.45 8.81 9.02 9.36 9.44 9.42 9.42 9.4	108.31 108.11 107.98 107.34 106.9 106.57 106.21 105.99 105.82 105.37 105.06 104.7 104.49 104.07 104.09 104.09 104.11		bankfull 7.25 106.26 dimension 18.8 13.7 2.2 3.3 0.0 hydraulics 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.0	top of bank 6.16 107.35 x-section ar width d max bank ht W flood pro velocity (ft/s discharge ra shear stress shear veloc unit stream Froude num friction facto	(ft) ea ne area ec) ate, Q (cfs) s ((lbs/ft sq) ity (ft/sec) power (lbs/ iber or u/u*	slope (%	6) "In" d mean wet P hyd radi w/d ratio
	I. (II) # 2 # 7 # 12 # 12 # 12 # 12 # 12 # 18 # 23 # 23 # 23 # 23 # 23 # 30 # 31 # 32.8 # 35.5 # 35.5 # 36.5 # 37 # 39 # 40 # 41 # 42.4	(tt) 5.2 5.4 5.53 6.17 6.61 6.94 7.3 7.52 7.69 8.14 8.45 8.81 9.02 9.36 9.44 9.42 9.42 9.42 9.4 9.42	108.31 108.11 107.98 107.34 106.9 106.57 106.21 105.99 105.82 105.37 105.06 104.7 104.09 104.09 104.09 104.11		bankfull 7.25 106.26 dimension 18.8 13.7 2.2 3.3 0.0 hydraulics 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.0	top of bank 6.16 107.35 x-section ar width d max bank ht W flood pro velocity (ft/s discharge ra shear stress shear veloc unit stream Froude num	(ft) ea ne area ec) ate, Q (cfs) s ((lbs/ft sq) ity (ft/sec) power (lbs/ iber or u/u*	slope (%	6) "In" d mean wet P hyd radi w/d ratio
	I. ((1) I 2 II 2 II 7 II 12 II 18 II 23 II 23 II 23 II 23 II 23 II 23 II 30 II 31 II 32.8 II 35.5 II 36.5 II 36.5 II 36.5 II 39 II 40 II 42.4 II 42.8 III 42.8	((t) 5.2 5.4 5.53 6.17 6.61 6.94 7.3 7.52 7.69 8.14 8.45 8.81 9.02 9.36 9.44 9.42 9.42 9.42 9.47	108.31 108.11 107.98 107.34 106.9 106.57 106.21 105.82 105.37 105.06 104.7 104.49 104.09 104.09 104.09 104.11 104.24		bankfull 7,-25 106.26 dimension 18.8 13.7 2.2 3.3 0.0 hydraulics 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.0	top of bank 6.16 107.35 x-section ar width d max bank ht W flood pro velocity (ft/s discharge ra shear stress shear stress shear veloc unit stream Froude num friction facto threshold gr	(ft) ea ne area ec) ate, Q (cfs) s ((lbs/ft sq) ty (ft/sec) power (lbs/ iber ir u/u* ain size (m	slope (%	6) "In" d mean wet P hyd radi w/d ratio
	I. ((1) # 2 # 2 # 12 # 12 # 18 # 23 # 23 # 23 # 23 # 23 # 23 # 30 # 31 # 32.8 # 35.5 # 36.5 # 36.5 # 39 # 40 # 41 # 42.4 # 42.4 # 43 # 43	((t) 5.2 5.4 5.53 6.17 6.61 6.94 7.3 7.52 7.69 8.14 8.45 8.81 9.02 9.36 9.42 9.42 9.42 9.42 9.42 9.42 9.42 9.42 9.42 9.42 9.42 9.42 9.42 9.42 9.42 9.42 9.42 9.42 9.43	108.31 108.11 107.98 107.34 106.9 106.57 106.21 105.39 105.37 105.06 104.7 104.49 104.15 104.09 104.02 104.03 104.11 104.24 105.72 107.35		bankfull 7.25 106.26 dimension 18.8 13.7 2.2 3.3 0.0 hydraulics 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.0	top of bank 6.16 107.35 x-section ar width d max bank ht W flood pro velocity (ft/s discharge ra shear stress shear veloc unit stream Froude num friction facto threshold gr	(ft) ea ne area ec) ate, Q (cfs) s ((lbs/ft sq) ity (ft/sec) power (lbs/ iber or u/u* ain size (m erial	slope (%	6) "In" d mean wet P hyd radi w/d ratio
	I. (II) # 2 # 2 # 12 # 12 # 12 # 12 # 23 # 23 # 27 # 30 # 31 # 32.8 # 35.5 # 36.5 # 39 # 40 # 40 # 42.4 # 42.8 # 43 # 44	((i) 5.2 5.4 5.53 6.17 6.61 6.94 7.3 7.52 7.69 8.14 8.45 8.81 9.02 9.36 9.44 9.42 9.42 9.42 9.42 9.42 9.45 9.779 6.16 5.74	108.31 108.11 107.98 107.34 106.9 106.57 106.21 105.82 105.37 105.06 104.7 104.49 104.09 104.09 104.09 104.11 104.24		bankfull 7,-25 106.26 dimension 18.8 13.7 2.2 3.3 0.0 hydraulics 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.0	top of bank 6.16 107.35 x-section ar width d max bank ht W flood pro velocity (ft/s discharge ra shear stress shear stress shear veloc unit stream Froude num friction facto threshold gr	(ft) ea ne area ec) ate, Q (cfs) s ((lbs/ft sq) ity (ft/sec) power (lbs/ power (lbs/ ber or u/u* ain size (m erial 284 (mm)	slope (%	6) "In" d mean wet P hyd radi w/d ratio


deconstructure descriptiones descriptiones descriptiones description descriptiones descriptiones

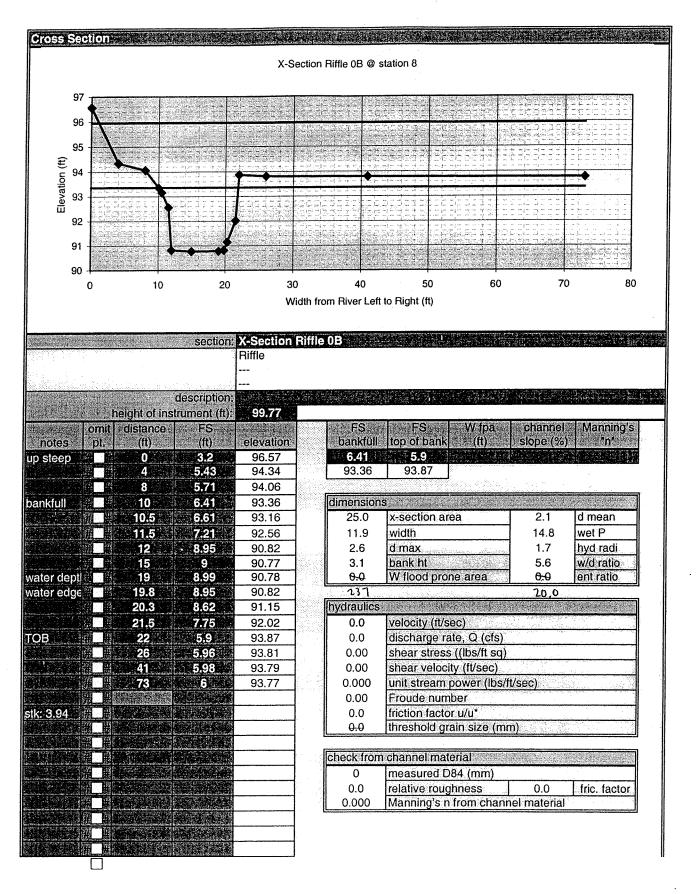




Reedy Creek Nature Park

Station in feet

HELMS: DAN NICHOLAS PARK (UT TO CRANE CR.)


REFERENCE DIMENSION

RIFFIES

andre thereast in the formation of the second	A DKFL	N Bucl	Davé .	Dmay	w/0	FPA	ENT RATIO	Low Bank Height	Bandt Nici Lett Ratio	Dunar Dune	STREAM TYPE
)А ;З	19.8	9.5	2.1	2.9	4.5	237	25.0	3.2	1.1	1.4	E
;3	25,0	11.9	2.1	2.6	5.7	237	20.0	3.1	1.2	1.2	E
ala porta complete	20.5	10.1	2.0	2.5	5.1	232	23.0	2.9	1.2	1.3	E
george autoriteispre reactory in to refer de	(9.3	16.0	1.9	2.5	5.3	345	34.5	3.1	1.2	(.3	Ē
1	21.2	10.4	2.0.	2.6	5.2	263	25.6	3.(1.2	1.3	
5	20.5	10.(2.0	2.6	5.1	237	25.0	3.1	,1.2	1.3	Æ
nerody K. Sterresson	19.3-25.0	9.5- 11.9	1.9-2.1	2.5-2.9	4.5- 5.7	232 - 345	20.0- 34.5	2.9- 3.2	1.1-1.2	,2 - .4	<u> </u>
and the second s	20.6 19.5 20.1 19.5	BRIL		4 9	2.8 3.0	Han 3.3 4.0	· · · · ·	/ sur Q 2 1 3 1	o o love	L Duol	
ready an environment of the environment	20.1		1 1.	9	2.9 3.0	3	7 1	.3-	1.6		

Cross Section									
			X-Sec	ction Rif	ffle OA @ st	ation -25			
97									
96									
€ 95									
Elevation (ff)			-						
		1							
92								45.5.20	
90									5186.2000 1.21000
90 0	10	20	••	40	50		0 8	0	90
			Wi	dth from	n River Left	to Right (ft)			
		contion	X-Section	Diffia	ሰለ				
		Section	Riffle			n de mênîge de li û de ser e. Li ne e. Li	- - -		and the second second
		description:	1220-120-120	87094 <u>8</u>	State State Co	CALL CONTRACTOR OF THE PARTY OF T	10 (C. 4 () 2 () 2 () 2 () () () () () (Sec. 20 20 1 2 12 12 12 12 12 12 12 12 12 12 12 12	
				(1.1.1.1.1.X.G.W) -			a an		
lom		strument (ft):			FS	FS	W fpa	channel	Mannin
om notes pt	it distance (ft)	FS (ft)	99.76 elevation		bankfull	top of bank	and the state of second s	channel slope (%	
	it distance (ft)	FS (ft)	99.76		the second second second second		W fpa (ft) 16.0		
notes pt Pextends	it distance (ft) 0 5 10	FS (ft) 3.36 5.58 6.14	99.76 elevation 96.4 94.18 93.62		bankfull 6.51 93.25	top of bank 6.14 93.62	(ft)		
notes pt. Pextends	it distance (ft) 6 0 5 10 7 11.4	FS (ft) 3.36 5.58 6.14 6.93	99.76 elevation 96.4 94.18 93.62 92.83		bankfull 6.51 93.25 dimensior	top of bank 6.14 6 4 93.62	(ft)	slope (%) , , , , , , , ,
notes pt. Pextends	it distance (ft) 0 5 10	FS (ft) 5.58 6.14 6.93 9.29	99.76 elevation 96.4 94.18 93.62		bankfull 6.51 93.25	top of bank 6.14 93.62	(ft)		d mean wet P
notes pt P extends # 7 FOB # Halweg	IL distance (ft) 5 10 11.4 11.6 12 12.5	FS (11) 3.36 5.58 6.14 6.93 9.29 9.33 9.37	99.76 elevation 96.4 94.18 93.62 92.83 90.47 90.43		bankfull 93.25 dimensior 19.8 9.5 2.9	top of bank 6.14 93.62 IS x-section area width d max	(ft)	2.1 12.8 1.6) "n" Haalist d mean wet P hyd radi
notes pt -P extends // / FOB // / halweg // /	II distance (ft) 5 10 11.4 11.6 12 12.5 14	FS (1) 3.36 5.58 6.14 6.93 9.29 9.33 9.37 9.22	elevation 96.4 94.18 93.62 92.83 90.47 90.43 90.39 90.54		bankfull 93.25 dimensior 19.8 9.5 2.9 3.2	top of bank 6.14 93.62 x-section area width d max bank ht	(ft) 16.0	2.1 12.8 1.6 4.5	d mean wet P hyd radi w/d ratio
notes pt P extends // / FOB // / halweg // / vater eleve // /	IL distance (ft) 5 10 11.4 11.6 12 12.5 14 15.6	FS (ft) 3.36 5.58 6.14 6.93 9.29 9.33 9.37 9.37 9.22 9.1	elevation 96.4 94.18 93.62 92.83 90.47 90.43 90.39 90.54 90.66		bankfull 93.25 dimensior 19.8 9.5 2.9 3.2 16:0	top of bank 6.14 93.62 IS x-section area width d max	(ft) 16.0	2.1 12.8 1.6 4.5 ₩7) "n" Haalist d mean wet P hyd radi
notes pt. P extends // / FOB // / halweg // / vater eleve // /	II distance (it) 0 5 10 11.4 11.6 12 12.5 14 15.6 17.5	FS (ft) 3.36 5.58 6.14 6.93 9.29 9.33 9.37 9.37 9.22 9.1 8.89	elevation 96.4 94.18 93.62 92.83 90.47 90.43 90.39 90.54		bankfull 93.25 dimension 19.8 9.5 2.9 3.2 16:0 2.37	top of bank 6.14 93.62 x-section area width d max bank ht	(ft) 16.0	2.1 12.8 1.6 4.5 ₹ 2 - 2.5	d mean wet P hyd radi w/d ratio ent ratio
notes pt P extends // / OB // / halweg // / vater eleve // /	distance (ft) 0 5 10 11.4 12 12.5 14 15.6 17.5 18.5	FS (ft) 3.36 5.58 6.14 6.93 9.29 9.33 9.37 9.22 9.1 8.89 8.26 7.08	elevation 96.4 94.18 93.62 92.83 90.47 90.43 90.43 90.39 90.54 90.54 90.66 90.87 91.5 92.68		bankfull 93.25 dimension 19.8 9.5 2.9 3.2 16:0 2.87 hydraulics 0.0	top of bank 93.62 s x-section area width d max bank ht W flood prone	(ft) 116.0	2.1 12.8 1.6 4.5 ₹ 2 - 2.5	d mean wet P hyd radi w/d ratio ent ratio
notes pt P extends # 7 FOB # halweg # vater eleve # OB #	distance (ft) 0 5 10 11.4 11.6 12 12.5 14 15.6 17.5 18.5 19.8 20.5	FS (1) 3.36 5.58 6.14 6.93 9.29 9.33 9.29 9.33 9.37 9.22 9.1 8.89 8.26 7.08 5.95	elevation 96.4 94.18 93.62 92.83 90.47 90.43 90.39 90.54 90.66 90.87 91.5 92.68 93.81		bankfull 93.25 dimension 19.8 9.5 2.9 3.2 16.0 2.37 hydraulics 0.0 0.0	top of bank 93.62 s x-section area width d max bank ht W flood prone velocity (ft/sec discharge rate	(ft) 116.0	2.1 12.8 1.6 4.5 ★ 7 - 1.3	d mean wet P hyd radi w/d ratio
notes pt P extends // / OB // / halweg // / vater eleve // / OB // // /	distance (ft) 0 5 10 11.4 12 12.5 14 15.6 17.5 18.5 19.8 20.5 23	FS (1) 3.36 5.58 6.14 6.93 9.29 9.33 9.29 9.33 9.37 9.22 9.1 8.89 8.26 7.08 5.95 5.98	elevation 96.4 94.18 93.62 92.83 90.47 90.43 90.39 90.54 90.66 90.87 91.5 92.68 93.81 93.78		bankfull 93.25 dimension 19.8 9.5 2.9 3.2 16:0 2.37 hydraulics 0.0 0.0 0.00	top of bank 93.62 s x-section area width d max bank ht W flood prone velocity (ft/sec discharge rate shear stress (((ft) 16.0	2.1 12.8 1.6 4.5 ★ 7 - 1.3	d mean wet P hyd radi w/d ratio
notes pt P extends // / OB // / halweg // / vater eleve // / OB // / OB // /	II distance (ft) 5 10 11.4 11.6 12 12.5 14 15.6 17.5 18.5 19.8 20.5 23 33	FS (1) 3.36 5.58 6.14 6.93 9.29 9.33 9.37 9.22 9.1 8.89 8.26 7.08 5.95 5.98 6.16	elevation 96.4 94.18 93.62 92.83 90.47 90.43 90.39 90.54 90.66 90.87 91.5 92.68 93.81 93.78 93.6		bankfull 93.25 dimension 19.8 9.5 2.9 3.2 16:0 2.37 hydraulics 0.0 0.0 0.00 0.00	top of bank 93.62 x-section area width d max bank ht W flood prone velocity (ft/sec discharge rate shear stress ((shear velocity	(ft) 16.0	2.1 12.8 1.6 4.5 ★7- 1.5	d mean wet P hyd radi w/d ratio
notes pt P extends # 7 OB # halweg # vater eleve # OB # 0 # 0 # 0 # 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1	II distance (II) 0 5 10 11.4 11.6 12 12.5 14 15.6 17.5 18.5 19.8 20.5 23 33 33 55	FS (1) 3.36 5.58 6.14 6.93 9.29 9.33 9.37 9.22 9.1 8.89 8.26 7.08 5.95 5.98 6.16 6.23	elevation 96.4 94.18 93.62 92.83 90.47 90.43 90.39 90.54 90.66 90.87 91.5 92.68 93.81 93.78 93.6 93.53		bankfull 93.25 dimension 19.8 9.5 2.9 3.2 16:0 2.37 hydraulics 0.0 0.0 0.00 0.00 0.000 0.000	top of bank 6.14 93.62 IS x-section area width d max bank ht W flood prone velocity (ft/sec discharge rate shear stress ((shear velocity unit stream po	(ft) 16.0	2.1 12.8 1.6 4.5 ★7- 1.5	d mean wet P hyd radi w/d ratio
notes pt P extends // / TOB // / halweg // / vater eleve // / OB // / // / / // / // / / // / // / / // / / / / // / / / / / / / / / / / / / / / / / / /	distance (it) 0 5 10 11.4 12 12.5 14 15.6 17.5 18.5 19.8 20.5 23 33 55 78	FS (1) 3.36 5.58 6.14 6.93 9.29 9.33 9.29 9.33 9.37 9.22 9.1 8.89 8.26 7.08 5.95 5.98 6.16 6.23 6.1	elevation 96.4 94.18 93.62 92.83 90.47 90.43 90.39 90.54 90.66 90.87 91.5 92.68 93.81 93.78 93.6 93.6 93.66		bankfull 93.25 dimension 19.8 9.5 2.9 3.2 16:0 0.0 0.0 0.00 0.00 0.00 0.000 0.000 0.000 0.000	top of bank 6.14 93.62 IS x-section area width d max bank ht W flood prone velocity (ft/sec discharge rate shear stress ((shear velocity) unit stream po Froude numbe	(ft) 16.0 3 area 0 0 0 (cfs) bbs/ft sq) (ft/sec) wer (lbs/ft/s r	2.1 12.8 1.6 4.5 ★7- 1.5	d mean wet P hyd radi w/d ratio
notes pt P extends // / OB // / nalweg // / vater elevc // / OB // / OB // / / /	distance (it) 0 5 10 11.4 12.5 14 15.6 17.5 18.5 19.8 20.5 23 33 55 78 94	FS (1) 3.36 5.58 6.14 6.93 9.29 9.33 9.29 9.33 9.37 9.22 9.1 8.89 8.26 7.08 5.95 5.98 6.16 6.23 6.1 6.1	elevation 96.4 94.18 93.62 92.83 90.47 90.43 90.39 90.54 90.66 90.87 91.5 92.68 93.81 93.78 93.6 93.53		bankfull 93.25 dimension 19.8 9.5 2.9 3.2 16:0 2.37 hydraulics 0.0 0.0 0.00 0.00 0.000 0.000	top of bank 6.14 93.62 IS x-section area width d max bank ht W flood prone velocity (ft/sec discharge rate shear stress ((shear velocity unit stream po	(ft) 16.0 16.0 area area 0 0 (cfs) bs/ft sq) (ft/sec) wer (lbs/ft/s r /u*	2.1 12.8 1.6 4.5 ★ 7 2.5	d mean wet P hyd radi w/d ratio
notes pt P extends // / OB nalweg /ater eleve // / OB // / OB // / / / / / / / / / / / / / / / / / /	distance (it) 0 5 10 11.4 12 12.5 14 15.6 17.5 18.5 19.8 20.5 23 33 55 78 94	FS (1) 3.36 5.58 6.14 6.93 9.29 9.33 9.29 9.33 9.37 9.22 9.1 8.89 8.26 7.08 5.95 5.98 6.16 6.23 6.1 6.1	elevation 96.4 94.18 93.62 92.83 90.47 90.43 90.39 90.54 90.66 90.87 91.5 92.68 93.81 93.78 93.6 93.6 93.66		bankfull 93.25 dimension 19.8 9.5 2.9 3.2 16:0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.	top of bank 6.14 93.62 x-section area width d max bank ht W flood prone velocity (ft/sec discharge rate shear stress ((shear velocity) unit stream po Froude numbe friction factor u threshold grain	(ft) 16.0 16.0 area area 0 Q (cfs) bs/ft/sq) (ft/sec) wer (lbs/ft/s r /u* size (mm)	slope (% 2.1 12.8 1.6 4.5 ★ 2 - 2.5 ****	d mean wet P hyd radi w/d ratio
notes pt P extends ////////////////////////////////////	distance (ft) 0 5 10 11.4 11.6 12 12.5 14 15.6 17.5 18.5 19.8 20.5 23 33 55 78 94	FS (11) 3.36 5.58 6.14 6.93 9.29 9.33 9.37 9.22 9.1 8.89 8.26 7.08 5.95 5.98 6.16 6.23 6.1 6.1	elevation 96.4 94.18 93.62 92.83 90.47 90.43 90.39 90.54 90.66 90.87 91.5 92.68 93.81 93.78 93.6 93.6 93.66		bankfull 93.25 dimension 19.8 9.5 2.9 3.2 16.0 2.7 hydraulics 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.0	top of bank 93.62 x-section area width d max bank ht W flood prone velocity (ft/sec discharge rate shear stress ((shear velocity) unit stream po Froude numbe friction factor u threshold grain	(ft) 16.0 16.0 area area 0 0 0 0 0 0 0 0 0 0 0 0 0	slope (% 2.1 12.8 1.6 4.5 ★ 7 2.5 ***	d mean wet P hyd radi w/d ratio
notes pt P extends // / TOB // / halweg // / vater eleve // / OB // / // / / // / // / / // / // / / // / / / / // / / / / / / / / / / / / / / / / / / /	distance (it) 0 5 10 11.4 11.6 12 12.5 14 15.6 17.5 18.5 19.8 20.5 23 33 55 78 94	FS (11) 3.36 5.58 6.14 6.93 9.29 9.33 9.37 9.22 9.1 8.89 8.26 7.08 5.95 5.98 6.16 6.23 6.1 6.1	elevation 96.4 94.18 93.62 92.83 90.47 90.43 90.39 90.54 90.66 90.87 91.5 92.68 93.81 93.78 93.6 93.6 93.66		bankfull 93.25 dimension 19.8 9.5 2.9 3.2 16:0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.	top of bank 6.14 93.62 x-section area width d max bank ht W flood prone velocity (ft/sec discharge rate shear stress ((shear velocity) unit stream po Froude numbe friction factor u threshold grain	(ft) 16.0. 16.0. area area 0 0 0 (ft/sec) wer (lbs/ft/sq) (ft/sec) wer (lbs/ft/sq) (ft/sec) wer (lbs/ft/sq) (ft/sec) area (mm)	slope (% 2.1 12.8 1.6 4.5 ★ 7 2.5 ***	d mean wet P hyd radi w/d ratio

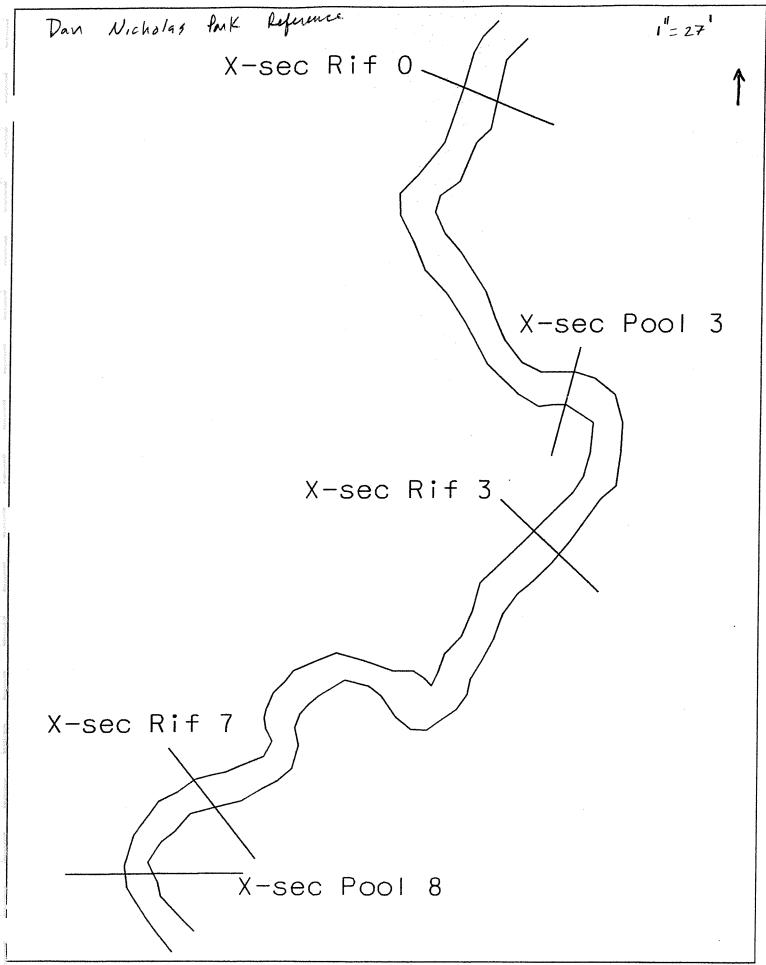
yaqırdı talaqıştır. Talati və tərəfilir

ومتلافته والأفر

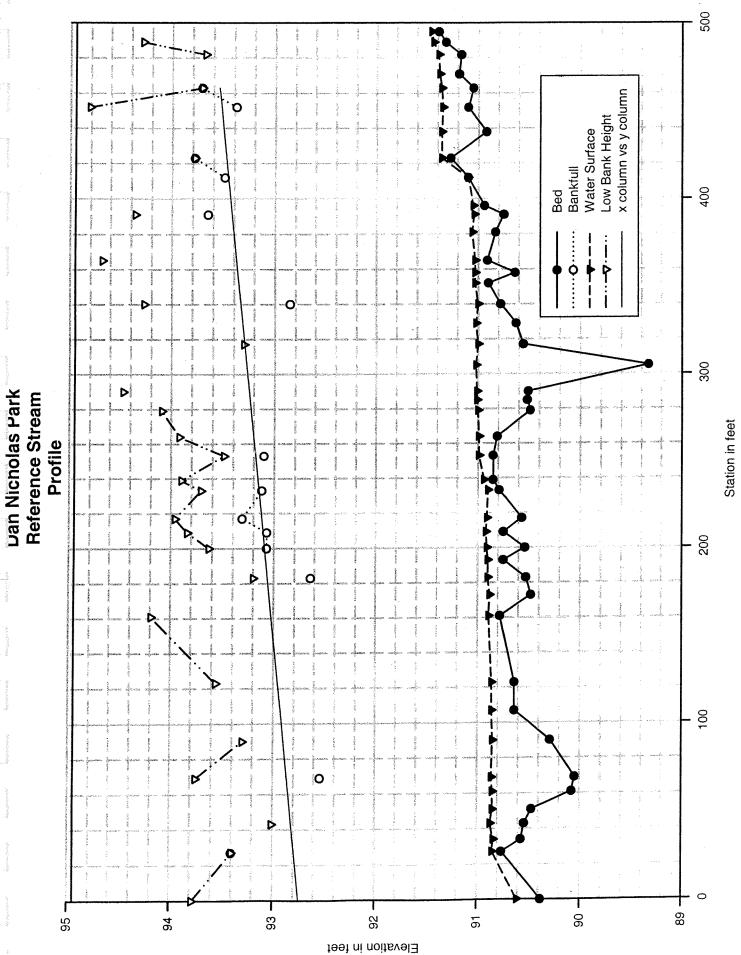
Cross S	section										
				X-S	Section Rif	fle 3 @ stat	tion 219				
9	7 	Essart.	an an air an air an						11 - 12 - 12 - 12 - 12 - 12 - 12 12 - 12 -	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	
9	6										
9 €	5										
atio	4						tan ang pang ang pang ang ang pang ang pang pang pang pang pan				-
	3		-								······································
9											
9			***								2548 - **3 5,554
9	0	20		40	60		80	100	120		140
				Ŵ	Vidth from	River Left t	to Right (ft)				
			eastion	V Souliou	Diffic 2	1965 - S.					
1.2		•	section	X-Section	n Riffle 3						
			section	X-Section Riffle	n Riffle 3						
				Riffle 	n Riffle 3						
		a contract of the second se	description	Riffle 	n Riffle 3						
	omit	eight of ins distance	description trument (ft) FS	Riffle 100.14		FS	FS2 es	Wipa	channel	Mannin	ng's
hotes	omit pt.	eight of ins distance (ft)	description trument (ft) FS (ft)	Riffle 100.14 elevation		FS. banktull	top of bank		Channel slope (%)	Mannin 'n' 0.034	
notes up steep	omit pt.	eight of ins distance (ft) 0 14	description trument (ft) FS (ft) 3.77 5.52	Riffle 100.14 elevation 96.37 94.62		FS	the second second second second second second second	(ft)		"n"	
the manager is a manager of	omit pt. # - H # - H	eight of ins distance (ft) 0 14 17.5	description trument (ft) FS (ft) 3.77 5.52 5.95	Riffle 100.14 elevation 96.37 94.62 94.19		FS banktull 6.8 93.34	top of bank 6.42 93.72	(ft)		"n"	
the manager is a manager of	omit pt.	eight of ins distance (ft) 0 14	description trument (ft) FS (ft) 3.77 5.52 5.95 6.37 6.14	Riffle 100.14 elevation 96.37 94.62 94.19 93.77 94		FS banktull 6.8 93.34 limension 20.5	top of bank 6.42 93.72 s x-section ar	(II) 150.0	slope (%)	"n" 0.034 d.mean	
up steep	omit pt 7 2 4 7	eight of ins distance (ft) 14 17.5 19 22 24	description trument (ft) FS (ft) 3.77 5.52 5.95 6.37 6.14 5.97	Riffle 100.14 elevation 96.37 94.62 94.19 93.77 94 93.77 94 94.17		FS banktull 6.8 93.34 limension 20.5 10.1	top of bank 6.42 93.72 s x-section ar width	(II) 150.0	slope (%)	d mean wet P	4
up steep TOB	omit pts //////////////////////////////////	eight of ins distance (ft) 0 14 17.5 19 22 24 24 27.7 28	description trument (ft) FS (ft) 3.77 5.52 5.95 6.37 6.14 5.97 6.38 7.78	Riffle elevation 96.37 94.62 94.19 93.77 94 94.17 93.76 92.36		FS banktull 6.8 93.34 limension 20.5 10.1 2.5 2.9	top of bank 93.72 s x-section ar width d max bank ht	(ft) 150.0 ea	slope (%) 2.0 13.1 1.6 5.0	'n' d mean wet P hyd radi w/d ratic	4
up steep TOB	omit pl. (7) (7) (7) (7) (7) (7) (7) (7) (7) (7)	eight of ins distance (it) 0 14 17.5 19 22 24 27.7 28 29.8	description trument (ft) FS (ft) 3.77 5.52 5.95 6.37 6.14 5.97 6.38 7.78 8.27	Riffle elevation 96.37 94.62 94.19 93.77 94 94.17 93.76 92.36 91.87		FS: banktull 6.8 93.34 Jimension: 20.5 10.1 2.5 2.9 150.0	top of bank 93.72 s x-section ar width d max	(ft) 150.0 ea	2.0 13.1 1.6 5.0 14 .9	'n" 0.034 d.mean wet P hyd radi	4
up steep TOB MB MB	omit pts //////////////////////////////////	eight of ins distance (ft) 0 14 17.5 19 22 24 27.7 28 29.8 30	description trument (ft) FS (ft) 3.77 5.52 5.95 6.37 6.14 5.97 6.38 7.78	Riffle elevation 96.37 94.62 94.19 93.77 94 94.17 93.76 92.36		FS: banktull 93.34 limension: 20.5 10.1 2.5 2.9 159.0 731.0	top of bank 93.72 s x-section ar width d max bank ht	(ft) 150.0 (ft) ea ne area	slope (%) 2.0 13.1 1.6 5.0	'n' d mean wet P hyd radi w/d ratic	4
up steep TOB MB MB EOW hawleg		eight of ins distance (ft) 0 14 17.5 19 22 24 27.7 28 29.8 30 31.8 34	description trument (ft) FS (ft) 3.77 5.52 5.95 6.37 6.14 5.97 6.38 7.78 8.27 9.07 9.21 9.29	Riffle -		FS banktull 6.8 93.34 jimension 20.5 10.1 2.5 2.9 <u>150.0</u> 7.31.0 iydraulics 0.0	top of bank 6.42 93.72 s x-section ar width d max bank ht W flood pro	(ft) 150.0 ea ne area	slope (%) 2.0 13.1 1.6 5.0 14.9 23.0	n" d mean wet P hyd radi w/d ratic ent ratio	4
up steep TOB MB MB EOW hawleg		eight of ins distance (f) 0 14 17.5 19 22 24 27.7 28 29.8 30 31.8 34 34 35.5	description trument (ft) FS (ft) 3.77 5.52 5.95 6.37 6.14 5.97 6.38 7.78 8.27 9.07 9.21 9.29 9.25	Riffle 		FS banktull 6.8 93.34 93.34 1imension: 20.5 10.1 2.5 2.9 <u>150.0</u> 737.0 iydraulics 0.0 0.0	top of bank 93.72 s x-section ar width d max bank ht W flood pro	(ft) 150.0 ea ne area sec) ate, Q (cfs)	slope (%) 2.0 13.1 1.6 5.0 14.9 23.0	n" d mean wet P hyd radi w/d ratic ent ratio	4
up steep TOB MB MB EOW hawleg	Omit pt. pt. y<	eight of ins distance (ft) 0 14 17.5 19 22 24 27.7 28 29.8 30 31.8 34 35.5 36.7	description trument (ft) FS (ft) 3.77 5.52 5.95 6.37 6.14 5.97 6.38 7.78 8.27 9.07 9.21 9.29 9.25 9.05	Riffle -		FS banktull 6.8 93.34 jumension: 20.5 10.1 2.5 2.9 150.0 131.0 iydraulics 0.0 0.0 0.00	top of bank 93.72 s x-section ar width d max bank ht W flood pro	(ft) 150.0 • • • • • • • • • • • • • • • • • •	slope (%) 2.0 13.1 1.6 5.0 14.9 23.0	n" d mean wet P hyd radi w/d ratic ent ratio	4
up steep TOB MB MB EOW hawleg MB	Omit pt.	eight of ins distance (ft) 0 14 17.5 19 22 24 27.7 28 29.8 30 31.8 34 35.5 36.7 37.2 38	description trument (ft) FS (ft) 3.77 5.52 5.95 6.37 6.14 5.97 6.38 7.78 8.27 9.07 9.21 9.29 9.25	Riffle 		FS banktull 6.8 93.34 93.34 1imension: 20.5 10.1 2.5 2.9 <u>150.0</u> 737.0 iydraulics 0.0 0.0	top of bank 93.72 93.72 x-section ar width d max bank ht W flood pro velocity (ft/s discharge ra shear stress shear veloc	(ft) 150.0 • • • • • • • • • • • • • • • • • •	2.0 13.1 1.6 5.0 14 .9 23.0	n" d mean wet P hyd radi w/d ratic ent ratio	4
up steep TOB MB MB EOW thawleg	Omition pt. 2	eight of ins distance. (it) 0 14 17.5 19 22 24 27.7 28 29.8 30 31.8 34 35.5 36.7 37.2 38 40	description trument (ft) FS (ft) 3.77 5.52 5.95 6.37 6.14 5.97 6.38 7.78 8.27 9.07 9.21 9.29 9.25 9.05 8.78 6.42 6.26	Riffle 100.14 elevation 96.37 94.62 94.19 93.77 94 94.17 93.76 92.36 91.87 91.07 90.93 90.85 90.89 91.09 91.36 93.72 93.88		FS banktull 6.8 93.34 janet 20.5 10.1 2.5 2.9 150.0 150.0 137.0 0.0 0.0 0.00 0.00 0.00 0.000 0.000 0.000 0.000	top of bank 93.72 93.72 x-section ar width d max bank ht W flood pro velocity (ft/s discharge ra shear stress shear veloc unit stream Froude num	ea ne area sec) ate, Q (cfs) s ((lbs/ft sq) ity (ft/sec) power (lbs/ft/ aber	2.0 13.1 1.6 5.0 14 .9 23.0	n" d mean wet P hyd radi w/d ratic ent ratio	4
up steep TOB MB MB EOW hawleg MB	Omition pt.	eight of ins distance (it) 0 14 17.5 19 22 24 27.7 28 29.8 30 31.8 34 35.5 36.7 37.2 38 40 50	description trument (ft) FS (ft) 3.77 5.52 5.95 6.37 6.14 5.97 6.38 7.78 8.27 9.07 9.21 9.29 9.25 9.05 8.78 6.42 6.26 5.96	Riffle 96.37 94.62 94.19 93.77 94 93.77 94 94.17 93.76 92.36 91.87 91.07 90.93 90.85 90.89 90.89 90.89 91.09 91.36 93.72 93.88 94.18		FS banktull 6.8 93.34 imension 20.5 10.1 2.5 2.9 150.0 150.0 132.0 0.0 0.0 0.00 0.00 0.00 0.00 0.00 0.	top of bank 93.72 93.72 s x-section ar width d max bank ht W flood pro velocity (ft/s discharge ra shear stress shear veloc unit stream Froude num friction facto	ea ne area sec) ate, Q (cfs) s ((lbs/ft sq) ity (ft/sec) power (lbs/ft/ ber or u/u*	2.0 13.1 1.6 5.0 14.9 23.0 sec)	n" d mean wet P hyd radi w/d ratic ent ratio	4
up steep TOB MB MB EOW thawleg	Omition pt. y	eight of ins distance (it) 0 14 17.5 19 22 24 27.7 28 29.8 30 31.8 34 35.5 36.7 37.2 38 40 50 80	description trument (ft) FS (ft) 3.77 5.52 5.95 6.37 6.14 5.97 6.38 7.78 8.27 9.07 9.21 9.29 9.25 9.05 8.78 6.42 6.26 5.96 6.04	Riffle 96.37 94.62 94.19 93.77 94 93.77 94 94.17 93.76 92.36 91.87 91.07 90.93 90.85 90.89 90.89 90.85 90.89 91.09 91.36 93.72 93.88 94.18 94.1		FS banktull 6.8 93.34 janet 20.5 10.1 2.5 2.9 150.0 150.0 137.0 0.0 0.0 0.00 0.00 0.00 0.000 0.000 0.000 0.000	top of bank 93.72 93.72 s x-section ar width d max bank ht W flood pro velocity (ft/s discharge ra shear stress shear veloc unit stream Froude num friction facto	ea ne area sec) ate, Q (cfs) s ((lbs/ft sq) ity (ft/sec) power (lbs/ft/ aber	2.0 13.1 1.6 5.0 14.9 23.0 sec)	n" d mean wet P hyd radi w/d ratic ent ratio	4
up steep TOB MB MB EOW thawleg MB TOB	Omitie plt plt i <tr tr=""></tr>	eight of ins distance (it) 0 14 17.5 19 22 24 27.7 28 29.8 30 31.8 34 35.5 36.7 37.2 38 40 50	description trument (ft) FS (ft) 3.77 5.52 5.95 6.37 6.14 5.97 6.38 7.78 8.27 9.07 9.21 9.29 9.25 9.05 8.78 6.42 6.26 5.96 6.04 6.05	Riffle 100.14 elevation 96.37 94.62 94.19 93.77 94 94.17 93.76 92.36 91.87 90.93 90.85 90.85 90.89 91.09 91.36 93.72 93.88 94.18 94.1 94.09		FS banktull 6.8 93.34 limension 20.5 10.1 2.5 2.9 150.0 132.0 ydraulics 0.0 0.00 0.00 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00	top of bank 93.72 93.72 s x-section ar width d max bank ht W flood pro velocity (ft/s discharge ra shear stress shear veloc unit stream Froude num friction facto	(ft) 150.0 s 150.0 s 150.0 s 150.0 s (lock 150.0 s 150.0 s	slope (%) 2.0 13.1 1.6 5.0 14.9 23.0 sec)	n" d mean wet P hyd radi w/d ratic ent ratio	4
and an and the many of a	Omit pl. pl. y <td>eight of ins distance (it) 0 14 17.5 19 22 24 27.7 28 29.8 30 31.8 34 35.5 36.7 37.2 38 40 50 80 100</td> <td>description trument (ft) FS (ft) 3.77 5.52 5.95 6.37 6.14 5.97 6.38 7.78 8.27 9.07 9.21 9.29 9.25 9.05 8.78 6.42 6.26 5.96 6.04</td> <td>Riffle 100.14 elevation 96.37 94.62 94.19 93.77 94 94.17 93.76 92.36 91.87 90.93 90.85 90.85 90.89 91.09 91.36 93.72 93.88 94.18 94.1 94.09</td> <td></td> <td>FS banktull 6.8 93.34 limension 20.5 10.1 2.5 2.9 150.0 132.0 ydraulics 0.0 0.00 0.00 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00</td> <td>top of bank 93.72 93.72 x-section ar width d max bank ht W flood pro velocity (ft/s discharge ra shear stress shear veloc unit stream Froude num friction facto threshold gr</td> <td>(ft) ea 150.0 s ea ne area sec) ate, Q (cfs) s ((lbs/ft sq) ity (ft/sec) power (lbs/ft/ ber or u/u* rain size (mm) terial D84 (mm)</td> <td>slope (%) 2.0 13.1 1.6 5.0 14.9 23.0 sec)</td> <td>d mean wet P hyd radi w/d ratic ent ratio</td> <td>4</td>	eight of ins distance (it) 0 14 17.5 19 22 24 27.7 28 29.8 30 31.8 34 35.5 36.7 37.2 38 40 50 80 100	description trument (ft) FS (ft) 3.77 5.52 5.95 6.37 6.14 5.97 6.38 7.78 8.27 9.07 9.21 9.29 9.25 9.05 8.78 6.42 6.26 5.96 6.04	Riffle 100.14 elevation 96.37 94.62 94.19 93.77 94 94.17 93.76 92.36 91.87 90.93 90.85 90.85 90.89 91.09 91.36 93.72 93.88 94.18 94.1 94.09		FS banktull 6.8 93.34 limension 20.5 10.1 2.5 2.9 150.0 132.0 ydraulics 0.0 0.00 0.00 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00	top of bank 93.72 93.72 x-section ar width d max bank ht W flood pro velocity (ft/s discharge ra shear stress shear veloc unit stream Froude num friction facto threshold gr	(ft) ea 150.0 s ea ne area sec) ate, Q (cfs) s ((lbs/ft sq) ity (ft/sec) power (lbs/ft/ ber or u/u* rain size (mm) terial D84 (mm)	slope (%) 2.0 13.1 1.6 5.0 14.9 23.0 sec)	d mean wet P hyd radi w/d ratic ent ratio	4

				X-S6	CUON HI	ffle 7 @ sta	10011 399			
⁹⁹ T	•									eneration de la caracteria. La caracteria de la caracte
98 -	_\-						9-1-12			
97	<u> </u>				<u>1717)</u>					
<u> </u>		92.22 22		22222232	20121				<u>2722</u> 33)	
€ "		\$.		estor ici					miter and a second	
Elevation (ft)					energia de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la					
8 94	Sandrei del m Sandrei del m Sandrei del m									
ш ₉₃			1		<u>.</u> 1.59/21					
92	06 212 	<u> •</u>	+				<u></u>	an al an air a' an an Rainteachta an Annaichteachta Rainteachta	م به کم برای برای برای مربق برای در این میکند. مربق برای در در این میکند	ار به دار در از به از از به از از به از
91		•	•					<u>59592</u> 222	an fail an an an an Angelain (an Angelain) an an a	and a second second Second second
90					.		<u> Deleksie</u>			and a constru
0		20	40	60		80	100	120	14	40 1
				Wi	dth from	River Left	to Right (ft)			
•				X-Section	Diffle					
100 A. 10			Section	Riffle	nume i			. And a statistic and	alate C Caral	
	hing		Self-shi budi							
8-	1		description:			as gurant		CONTRACTOR		
	ł		strument (ft):	100.76						
	omit	distance	FS			FS -	FS	Wifpa	channel	
notes	pt.	(ft)	(ft)	elevation		bankfull	top of bank	. (ft)		,) i i i i i i i i i i i i i i i i i i i
up steep	観く開			00.00		and the second second			slope (%	
		5	2.14	98.62 95.78		7.03	6.42	18.5		
	7	12	4.98	95.78		and the second second				
		12 15	4.98 5.66	95.78 95.1		7.03 93.73	6.42 94.34	18.5		
	alter mellet	12 15 19	4.98 5.66 6.09	95.78 95.1 94.67		7.03 93.73	6.42 94.34	18.5		
	> >	12 15 19 20	4.98 5.66 6.09 6.49	95.78 95.1 94.67 94.27		7.03 93.73 dimensior	6.42 0 94.34	18.5		
	<u>></u> > <u>></u>	12 15 19	4.98 5.66 6.09 6.49 6.91	95.78 95.1 94.67		7.03 93.73 dimensior 19.3	6.42 94.34	18.5	1.9	d mean
		12 15 19 20 21	4.98 5.66 6.09 6.49	95.78 95.1 94.67 94.27 93.85		7.03 93.73 dimension 19.3 10.0 2.5 3.1	x-section are width d max bank ht	18.5 3a	1.9 12.5	d mean wet P
≘OW: dept		12 15 19 20 21 22.2 22.7 23	4.98 5.66 6.09 6.49 6.91 7.97 8.38 9.53	95.78 95.1 94.67 94.27 93.85 92.79 92.38 91.23		93.73 93.73 dimension 19.3 10.0 2.5 3.1 18:5	x-section are width d max bank ht W flood pror	18.5 3a	1.9 12.5 1.5	d mean wet P hyd radi
a an		12 15 19 20 21 22.2 22.7 23 24.5	4.98 5.66 6.09 6.49 6.91 7.97 8.38 9.53 9.54	95.78 95.1 94.67 94.27 93.85 92.79 92.38 91.23 91.22		7.03 93.73 dimension 19.3 10.0 2.5 3.1 10.5 3.45.0	A 6.42 A 94.34 94.34 ns x-section are width d max bank ht W flood pror	Pa ne area	1.9 12.5 1.5 5.2	d mean wet P hyd radi w/d ratio
a an		12 15 19 20 21 22.2 22.7 23 24.5 28.2	4.98 5.66 6.09 6.49 6.91 7.97 8.38 9.53 9.54 9.42	95.78 95.1 94.67 93.85 92.79 92.38 91.23 91.22 91.34		7.03 93.73 dimension 19.3 10.0 2.5 3.1 18:5 3.45.0 3.45.0	A first section and width d max bank ht W flood pror	pa pa ne area	1.9 12.5 1.5 5.2	d mean wet P hyd radi w/d ratio
EOW		12 15 19 20 21 22.2 22.7 23 24.5 28.2 29	4.98 5.66 6.09 6.49 6.91 7.97 8.38 9.53 9.54 9.54 9.42 9.34	95.78 95.1 94.67 93.85 92.79 92.38 91.23 91.22 91.34 91.42		7.03 93.73 dimension 19.3 10.0 2.5 3.1 18:5 3.45.0 nydraulics 0.0	<pre>16.42 94.34 94.34 1s x-section arr width d max bank ht W flood pror 3 velocity (ft/section arr </pre>	Pa pa ne area	1.9 12.5 1.5 5.2	d mean wet P hyd radi w/d ratio
EOW MB		12 15 19 20 21 22.2 22.7 23 24.5 28.2 29 30	4.98 5.66 6.09 6.49 6.91 7.97 8.38 9.53 9.53 9.54 9.42 9.34 8.67	95.78 95.1 94.67 94.27 93.85 92.79 92.38 91.23 91.23 91.22 91.34 91.42 92.09		703 93.73 dimension 19.3 10.0 2.5 3.1 18:5 3.45.0 1ydraulics 0.0 0.0	<pre>s</pre>	18.5	1.9 12.5 1.5 5.2	d mean wet P hyd radi w/d ratio
Eow MB MB		12 15 19 20 21 22.2 22.7 23 24.5 28.2 29 30 30.9	4.98 5.66 6.09 6.49 6.91 7.97 8.38 9.53 9.54 9.54 9.42 9.34 8.67 7.51	95.78 95.1 94.67 93.85 92.79 92.38 91.23 91.23 91.22 91.34 91.42 92.09 93.25		703 93.73 dimension 19.3 10.0 2.5 3.1 18:5 <u>3.45.0</u> nydraulics 0.0 0.0 0.00	x-section and width d max bank ht W flood pror velocity (ft/se discharge ra shear stress	18.5 2a 1e area ec) te, Q (cfs) ((lbs/ft sq)	1.9 12.5 1.5 5.2	d mean wet P hyd radi w/d ratio
EOW MB MB		12 15 19 20 21 22.2 22.7 23 24.5 28.2 29 30 30.9 31.5	4.98 5.66 6.09 6.49 6.91 7.97 8.38 9.53 9.54 9.54 9.42 9.34 8.67 7.51 6.42	95.78 95.1 94.67 93.85 92.79 92.38 91.23 91.23 91.22 91.34 91.42 92.09 93.25 94.34		7.03 93.73 93.73 93.73 dimension 19.3 10.0 2.5 3.1 10.5 3.1 10.5 3.1 10.5 3.1 10.5 3.1 10.5 3.1 10.5 3.1 10.5 3.1 10.5 3.1 10.5 3.1 10.5 0.0 0.0 0.0 0.0 0.00 0.00 0.00 0.00	 A.42 94.34 9	18.5	1.9 12.5 1.5 5.2 ***	d mean wet P hyd radi w/d ratio
EOW MB MB		12 15 19 20 21 22.2 22.7 23 24.5 28.2 29 30 30.9 31.5 33	4.98 5.66 6.09 6.49 6.91 7.97 8.38 9.53 9.54 9.42 9.34 8.67 7.51 6.42 6.15	95.78 95.1 94.67 93.85 92.79 92.38 91.23 91.23 91.22 91.34 91.42 92.09 93.25 94.34 94.61		7.03 93.73 93.73 93.73 dimension 19.3 10.0 2.5 3.1 10.5 3.1 10.5 3.1 10.5 3.1 10.5 3.1 10.5 3.1 10.5 3.1 10.5 3.1 10.5 3.1 10.5 3.1 10.5 0.0 0.0 0.0 0.0 0.00 0.00 0.00 0.000	x-section ard width d max bank ht W flood pror velocity (ft/se discharge ra shear stress shear velocit unit stream	e area ec) ((lbs/ft sq) y (ft/sec)	1.9 12.5 1.5 5.2 ***	d mean wet P hyd radi w/d ratio
EOW: dep1 EOW MB MB FOB		12 15 19 20 21 22.2 22.7 23 24.5 28.2 29 30 30.9 31.5 33 39	4.98 5.66 6.09 6.49 6.91 7.97 8.38 9.53 9.54 9.42 9.34 8.67 7.51 6.42 6.15 5.96	95.78 95.1 94.67 93.85 92.79 92.38 91.23 91.23 91.22 91.34 91.42 92.09 93.25 94.34		7.03 93.73 93.73 93.73 dimension 19.3 10.0 2.5 3.1 18:5 3.45.0 3.45.0 hydraullics 0.0 0.00 0.00 0.00 0.000 0.000 0.000 0.000 0.000	 A.42 94.34 9	ea he area bec) te, Q (cfs) ((lbs/ft sq) ty (ft/sec) power (lbs/ft/ ber	1.9 12.5 1.5 5.2 ***	d mean wet P hyd radi w/d ratio
Eow MB MB		12 15 19 20 21 22.2 22.7 23 24.5 28.2 29 30 30.9 31.5 33	4.98 5.66 6.09 6.49 6.91 7.97 8.38 9.53 9.54 9.42 9.34 8.67 7.51 6.42 6.15	95.78 95.1 94.67 93.85 92.79 92.38 91.23 91.23 91.22 91.34 91.42 92.09 93.25 94.34 94.61 94.8		7.03 93.73 93.73 93.73 dimension 19.3 10.0 2.5 3.1 10.5 3.1 10.5 3.1 10.5 3.1 10.5 3.1 10.5 3.1 10.5 3.1 10.5 3.1 10.5 3.1 10.5 3.1 10.5 0.0 0.0 0.0 0.0 0.00 0.00 0.00 0.000	x-section ard width d max bank ht W flood pror velocity (ft/se discharge ra shear stress shear velocit unit stream p Froude num	118.5 ea ne area ec) ((lbs/ft sq) ((lbs/ft sq) ty (ft/sec) power (lbs/ft/ ber r u/u*	1.9 12.5 1.5 5.2 ★&	d mean wet P hyd radi w/d ratio
eow MB MB Fob		12 15 19 20 21 22.2 22.7 23 24.5 28.2 29 30 30.9 31.5 33 39 57 80 113	4.98 5.66 6.09 6.49 6.91 7.97 8.38 9.53 9.54 9.42 9.34 8.67 7.51 6.42 6.15 5.96 6 5.99 6.06	95.78 95.1 94.67 93.85 92.79 92.38 91.23 91.23 91.22 91.34 91.42 92.09 93.25 94.34 94.61 94.8 94.76		25 3.1 10.0 2.5 3.1 10.5 2.5 3.1 10.5 3.1 10.5 3.1 10.5 3.1 10.5 3.1 10.5 0.0 0.0 0.0 0.00 0.00 0.00 0.00	 A.42 and a second second	18.5 ea ne area ec) te, Q (cfs) ((lbs/ft sq) ty (ft/sec) power (lbs/ft/ ber r u/u* ain size (mm	1.9 12.5 1.5 5.2 ★&	d mean wet P hyd radi w/d ratio
Eow MB MB Fob		12 15 19 20 21 22.2 22.7 23 24.5 28.2 29 30 30.9 31.5 33 39 57 80 113 134	4.98 5.66 6.09 6.49 6.91 7.97 8.38 9.53 9.54 9.42 9.34 8.67 7.51 6.42 6.15 5.96 6 5.99 6.06 6.02	95.78 95.1 94.67 94.27 93.85 92.79 92.38 91.23 91.23 91.22 91.34 91.42 92.09 93.25 94.34 94.61 94.8 94.76 94.77		25 3.1 10.0 2.5 3.1 10.5 2.5 3.1 10.5 3.1 10.5 3.1 10.5 3.1 10.5 3.1 10.5 0.0 0.0 0.0 0.00 0.00 0.00 0.00	 A 6.42 and a 94.34 94.34 94.34 94.34 ans x-section are width d max bank ht W flood pror bank ht W flood pror ans bank ht W flood pror ans bank ht W flood pror ans bank ht W flood pror bank ht W flood pror	ec) ((lbs/ft sq) ((lbs/ft sq) (y (ft/sec) ber r u/u* ain size (mm	1.9 12.5 1.5 5.2 ★&	d mean wet P hyd radi w/d ratio
EOW MB TOB		12 15 19 20 21 22.2 22.7 23 24.5 28.2 29 30 30.9 31.5 33 39 57 80 113 134	4.98 5.66 6.09 6.49 6.91 7.97 8.38 9.53 9.54 9.42 9.34 8.67 7.51 6.42 6.15 5.96 6 5.99 6.06	95.78 95.1 94.67 94.27 93.85 92.79 92.38 91.23 91.22 91.34 91.42 92.09 93.25 94.34 94.61 94.8 94.76 94.77 94.7		7.03 93.73 93.73 93.73 dimension 19.3 10.0 2.5 3.1 18:5 3.45.0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	 A. A. A	ec) te, Q (cfs) ((lbs/ft sq) ty (ft/sec) bower (lbs/ft/ ber r u/u* ain size (mm erial 84 (mm)	1.9 12.5 1.5 5.2 ¥8 Sec)	d mean wet P hyd radi w/d ratio ent ratio
EOW MB NB TOB		12 15 19 20 21 22.2 22.7 23 24.5 28.2 29 30 30.9 31.5 33 39 57 80 113 134	4.98 5.66 6.09 6.49 6.91 7.97 8.38 9.53 9.54 9.42 9.34 8.67 7.51 6.42 6.15 5.96 6 5.99 6.06 6.02	95.78 95.1 94.67 94.27 93.85 92.79 92.38 91.23 91.22 91.34 91.42 92.09 93.25 94.34 94.61 94.8 94.76 94.77 94.7		7.03 93.73 93.73 93.73 dimension 19.3 10.0 2.5 3.1 18:5 3.45.0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	 A. A. A	ec) te, Q (cfs) ((lbs/ft sq) ty (ft/sec) bower (lbs/ft/ ber r u/u* ain size (mm erial 84 (mm) hness	1.9 12.5 1.5 5.2 ¥8 Sec)	d mean wet P hyd radi w/d ratio ent ratio
EOW MB rOB		12 15 19 20 21 22.2 22.7 23 24.5 28.2 29 30 30.9 31.5 33 39 57 80 113 134	4.98 5.66 6.09 6.49 6.91 7.97 8.38 9.53 9.54 9.42 9.34 8.67 7.51 6.42 6.15 5.96 6 5.99 6.06 6.02	95.78 95.1 94.67 94.27 93.85 92.79 92.38 91.23 91.22 91.34 91.42 92.09 93.25 94.34 94.61 94.8 94.76 94.77 94.7		7.03 93.73 93.73 93.73 dimension 19.3 10.0 2.5 3.1 18:5 3.45.0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	 A. A. A	ec) te, Q (cfs) ((lbs/ft sq) ty (ft/sec) bower (lbs/ft/ ber r u/u* ain size (mm erial 84 (mm) hness	1.9 12.5 1.5 5.2 ¥8 Sec)	d mean wet P hyd radi w/d ratio ent ratio

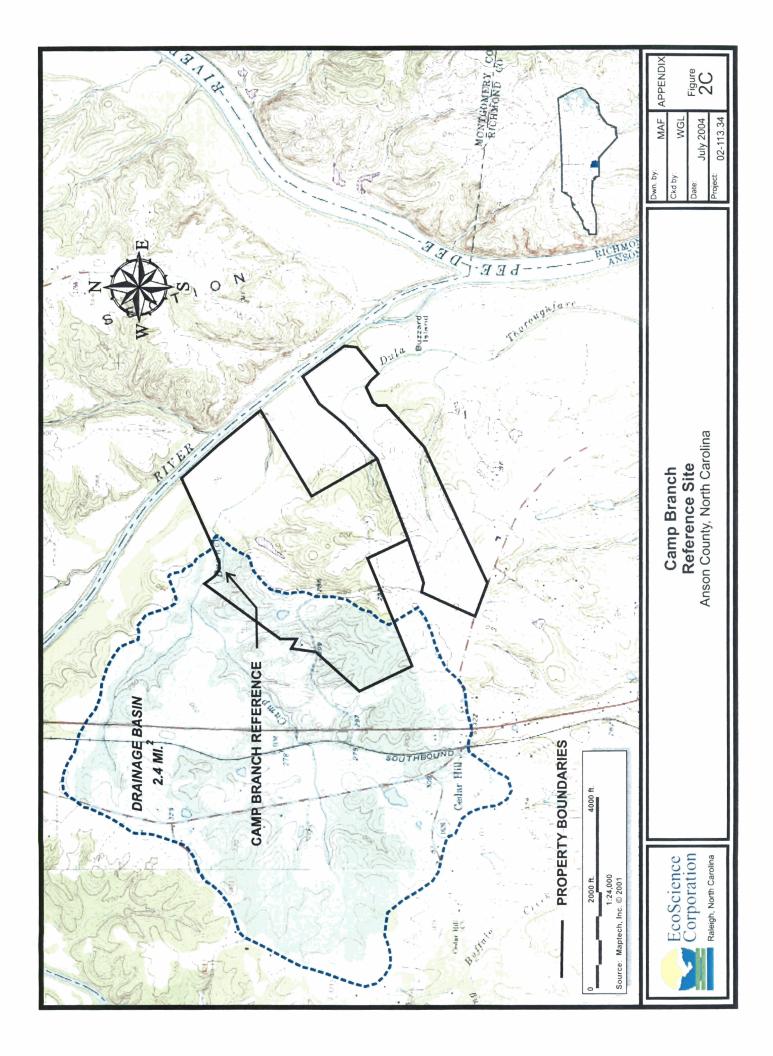
		YTT 7 5 3 20 0 5		CANADA P.C. B	Acat and the set			20.03	Contract of	
Cross Se	ellon									
				X-Se	ction Pool	3 @ stati	on 162.5			
98 -			Cross Ci	e e e e e e e e e e e e e e e e e e e						n a shekara Nan sa sa sa Nan sa
97		Constant Con	هر میر از این میشینی اس اس هارسا ماین طریقی این این چر این از از این این این این این				م مولورد مراجع مهرور و مراجع الم الم مراجع الم			
96 -	1		pa mana ang ang ang ang ang ang ang ang ang	and Viets 715 The particular of the		er gen en over overen. An gen en jan med in An gen en gen en jan versjen.				
€ 95 -	$-\Lambda$					e in e e e ei e e in in e e e e e e e e e e e e e e				
Elevation (ft) 66 66	$\sim \lambda$								<u>n on 523</u>	
evat	F				59224				0.70075	
										4 4 4 4 7 7 7 7 7 3 1 3 1 1 1 1 1 1
92 -					111					
91 -										
90 -							100	120	14	<u>0</u>
C)	20	40	60		80 Biver Left	to Right (ft)	12.0		0
				44		aver con	to riight (it)			
									an gangangkanan " anny norton biliting biliting	
		Made Maria	section:	CONTRACTOR OF						Canada et al a Carlo
and the second sec				a contract the second second		THE REPORT OF THE ST				
-				Pool			,			
				Pool 						
	h		description: trument (ft):	Pool 						
	omit	eight of ins distance.	description: trument (ff): FS	Pool 100.17		FS	ES	W fpa	channel	
notes	omit . pt.	aight of lins distance (ft)	description: trument (ft): FS (ft)	Pool 100.17 elevation		bankfull	top of bank		channel slope (%	
notes up steep	omit	eight of ins distance.	description: trument (ff): FS (ft) 3.22	Pool 100.17		Contraction of the second of the	top of bank			
	omit . pt.	aight of ins distance (ft)	description: trument (ft): FS (ft)	Pool 100.17 elevation 96.95		bankfull 6.8	top of bank			
	omit . pt.	aight of ins distance (ft) 0 11 19 24	description: trument (ft): .FS .(ti) 3.22 6.08 6.1 6.64	Pool 100.17 elevation 96.95 94.09 94.07 93.53		bankfull 6.8 93.37 limenslor	top of bank 6.37 93.8	((t))	slope (%) **n"
	omit pl. # - # # - #	eight of ins distance (fi) 0 11 29 24 28	description: trument (ft): .FS (ft) 3.22 6.08 6.1 6.64 6.8	Pool 100.17 elevation 96.95 94.09 94.07 93.53 93.37		bankfull 6.8 93.37 Imension 20.6	top of bank 6.37 93.8 Is x-section ar	((t))	slope (%) "n" d mean
	omit pt. 74 74 74 74 74 74 74 74 74 74 74 74 74	eight of ins distance (ft) 0 11 19 24 28 28 29.5	description: trument (ff): FS (ft) 3.22 6.08 6.1 6.64 6.8 6.95	Pool elevation 96.95 94.09 94.07 93.53 93.37 93.22		bankfull 6.8 93.37 imensior 20.6 11.7	top of bank 6.37 93.8 s x-section an width	((t))	slope (%) 1.8 13.9) "n" d mean wet P
	omit pt. 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	eight of ins distance (ft) 0 11 19 24 28 29.5 33	description: trument (ft): (ft) 3.22 6.08 6.1 6.64 6.8 6.95 8.03	Pool elevation 96.95 94.09 94.07 93.53 93.37 93.22 92.14		bankfull 6.8 93.37 limension 20.6 11.7 2.8	top of bank 6.37 93.8 Is x-section ar	((t))	slope (%) "n" d mean
	omit pl.	eight of ins distance (ft) 0 11 19 24 28 28 29.5	description: trument (ft): (ft) 3.22 6.08 6.1 6.64 6.8 6.95 8.03 8.35	Pool elevation 96.95 94.09 94.07 93.53 93.37 93.22 92.14 91.82 91.4		bankfull 6.8 93.37 imensior 20.6 11.7	top of bank 6.37 93.8 15 x-section an width d max	(ft) Ba	slope (% 1.8 13.9 1.5) "n" d mean wet P hyd rad
up steep EOW		elight of lins distance (it) 0 11, 19 24 28 29,5 33 33,7 34,4 34,8	description: trument (ft): FS (ft) 3.22 6.08 6.1 6.64 6.8 6.95 8.03 8.35 8.77 9.24	Pool 100.17 elevation 96.95 94.09 94.07 93.53 93.37 93.22 92.14 91.82 91.4 90.93		bankfull 93.37 limenslor 20.6 11.7 2.8 3.3 0.0	top of bank 6.37 93.8 x-section an width d max bank ht W flood prov	(ft) Ba	1.8 13.9 1.5 6.7) "n" d mean wet P hyd rad w/d rati
up steep EOW		elight of lins distance (it) 0 11 19 24 28 29.5 33 33.7 34.4 34.8 36.5	description: trument (ft): FS : (ft) 3.22 6.08 6.1 6.64 6.8 6.95 8.03 8.35 8.77 9.24 9.33	Pool 100.17 elevation 96.95 94.09 94.07 93.53 93.37 93.22 92.14 91.82 91.4 90.93 90.84		bankfull 6.8 93.37 imension 20.6 11.7 2.8 3.3 0.0 ydraulics	top of bank 93.8 x-section an width d max bank ht W flood prot	(ft) ea he area	1.8 13.9 1.5 6.7) "n" d mean wet P hyd rad w/d rati
up steep EOW		alight of lins distance (it) 0 11. 19 24 28 29.5 33 33.7 34.4 34.8 36.5 38	description: trument (ft): FS : (ft) 3.22 6.08 6.1 6.64 6.8 6.95 8.03 8.35 8.77 9.24 9.33 9.51	Pool 100.17 elevation 96.95 94.09 94.07 93.53 93.37 93.22 92.14 91.82 91.4 90.93 90.84 90.66		bankfull 6.8 93.37 imension 20.6 11.7 2.8 3.3 0.0 ydraulics 0.0	top of bank 93.8 x-section an width d max bank ht W flood pro	ea ea ea ea ec)	1.8 13.9 1.5 6.7) "n" d mean wet P hyd rad w/d rati
up steep EOW		eight of ins distance (it) 0 11 19 24 28 29.5 33 33.7 34.4 34.8 36.5 38 39	description: trument (ff): FS (ff) 3.22 6.08 6.1 6.64 6.8 6.95 8.03 8.35 8.77 9.24 9.33 9.51 9.63	Pool elevation 96.95 94.09 94.07 93.53 93.37 93.22 92.14 91.82 91.4 91.82 91.4 90.93 90.84 90.66 90.54		bankfull 93.37 imension 20.6 11.7 2.8 3.3 0.0 ydraulics 0.0 0.0	top of bank 93.8 x-section an width d max bank ht W flood prot	ea ne area ec) ate, Q (cfs)	1.8 13.9 1.5 6.7) "n" d mean wet P hyd rad w/d rati
up steep EOW halweg EOW		eight of ins distance (it) 0 11 19 24 28 29,5 33 33,7 34,4 34,8 36,5 38 39 40	description: trument (ff) FS (ft) 3.22 6.08 6.1 6.64 6.8 6.95 8.03 8.35 8.77 9.24 9.33 9.51 9.63 9.23	Pool 100.17 elevation 96.95 94.09 94.07 93.53 93.37 93.22 92.14 91.82 91.4 90.93 90.84 90.66		bankfull 6.8 93.37 imension 20.6 11.7 2.8 3.3 0.0 ydraulics 0.0	top of bank 6.37 93.8 15 x-section ar width d max bank ht W flood prod velocity (ft/s discharge ra shear stress shear veloci	ea ne area ec) ate, Q (cfs) a ((lbs/ft sq) ty (ft/sec)	1.8 1.8 13.9 1.5 6.7 0.0) "n" d mean wet P hyd rad w/d rati
up steep EOW thalweg EOW		eight of ins distance (it) 0 11 19 24 28 29,5 33 33.7 34.4 34.8 36.5 38 39 40 40.7 41.4	description: trument (ff): .FS (ft) 3.22 6.08 6.1 6.64 6.8 6.95 8.03 8.35 8.77 9.24 9.33 9.51 9.63 9.23 7.93 6.37	Pool 		bankfull 6.8 93.37 limenslor 20.6 11.7 2.8 3.3 0.0 ydraulics 0.0 0.00 0.00 0.00 0.000 0.000	top of bank 6.37 93.8 Is x-section ar width d max bank ht W flood prof velocity (ft/s discharge ra shear stress shear veloci unit stream	ea ne area ec) ate, Q (cfs) a ((lbs/ft sq) ty (ft/sec) power (lbs/ft/s	1.8 1.8 13.9 1.5 6.7 0.0) "n" d mean wet P hyd rad w/d rati
up steep EOW thalweg EOW		eight of ins distance (ii) 0 11 19 24 28 29,5 33 33,7 34,4 34,8 36,5 38 39 40 40,7 40,7 41,4 43	description: trument (ff): .FS (ft) 3.22 6.08 6.1 6.64 6.8 6.95 8.03 8.35 8.77 9.24 9.33 9.51 9.63 9.23 7.93 6.37 6.01	Pool 		bankfull 6.8 93.37 20.6 11.7 2.8 3.3 0.0 ydraulics 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.000 0.000 0.000 0.000	top of bank 93.8 s x-section an width d max bank ht W flood prof velocity (ft/s discharge ras shear stress shear veloci unit stream Froude num	ea ne area ec) ite, Q (cfs) i ((lbs/ft sq) ty (ft/sec) power (lbs/ft/s ber	1.8 1.8 13.9 1.5 6.7 0.0) "n" d mean wet P hyd rad w/d rati
up steep EOW thalweg EOW		Eight of ins distance (ii) 0 11 19 24 28 29.5 33 33.7 34.4 34.8 36.5 38 39 40 40.7 41.4 43 48	description: trument (ff) 3.22 6.08 6.1 6.64 6.8 6.95 8.03 8.35 8.77 9.24 9.33 9.51 9.63 9.23 7.93 6.37 6.01 5.95	Pool 		bankfull 6.8 93.37 20.6 11.7 2.8 3.3 0.0 ydraulics 0.0 0.000 0.00	top of bank 93.8 s x-section an width d max bank ht W flood prof velocity (ft/s discharge ras shear stress shear veloci unit stream Froude num friction facto	ea ne area ec) ate, Q (cfs) s ((lbs/ft sq) ty (ft/sec) power (lbs/ft/s ber r u/u*	1.8 1.9 1.5 6.7 0.0 sec)) "n" d mean wet P hyd rad w/d rati
up steep EOW thalweg EOW		Eight of ins distance (ff) 0 11 19 24 28 29.5 33 33.7 34.4 34.8 36.5 38 39 40 40.7 41.4 43 48 70	description: trument (ff) 3.22 6.08 6.1 6.64 6.8 6.95 8.03 8.35 8.77 9.24 9.33 9.51 9.63 9.23 7.93 6.37 6.01 5.95 6.13	Pool 		bankfull 6.8 93.37 20.6 11.7 2.8 3.3 0.0 ydraulics 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.000 0.000 0.000 0.000	top of bank 93.8 s x-section an width d max bank ht W flood prot velocity (ft/s discharge ra shear stress shear veloci unit stream Froude num friction facto	ea ne area ec) ite, Q (cfs) i ((lbs/ft sq) ty (ft/sec) power (lbs/ft/s ber	1.8 1.9 1.5 6.7 0.0 sec)) "n" d mean wet P hyd rad w/d rati
up steep EOW thalweg EOW		Eight of ins distance (ff) 11 19 24 28 29.5 33 33.7 34.4 34.8 36.5 38 39 40 40.7 41.4 43 48 70 98	description: trument (ff): 3.22 6.08 6.1 6.64 6.8 6.95 8.03 8.35 8.77 9.24 9.33 9.51 9.63 9.23 7.93 6.37 6.01 5.95 6.13 6.16	Pool 		bankfull 6.8 93.37 limenslor 20.6 11.7 2.8 3.3 0.0 vdraulics 0.0 0.00 0.	top of bank 93.8 s x-section an width d max bank ht W flood prot velocity (ft/s discharge ra shear stress shear veloci unit stream Froude num friction facto	ea ne area ec) ite, Q (cfs) is ((lbs/ft sq) ty (ft/sec) power (lbs/ft/s ber r u/u* ain size (mm)	1.8 1.9 1.5 6.7 0.0 sec)) "n" d mean wet P hyd rad w/d rati
up steep EOW thalweg EOW		Eight of ins distance (ff) 0 11 19 24 28 29.5 33 33.7 34.4 34.8 36.5 38 39 40 40.7 41.4 43 48 70 98 127 144	description: frument (ff): 3.22 6.08 6.1 6.64 6.8 6.95 8.03 8.35 8.77 9.24 9.33 9.51 9.63 9.23 7.93 6.37 6.01 5.95 6.13 6.16 6.31 6.44	Pool 		bankfull 6.8 93.37 limenslor 20.6 11.7 2.8 3.3 0.0 vdraulics 0.0 0.00 0.	top of bank 6.37 93.8 x-section arr width d max bank ht W flood prof width width d max bank ht W flood prof welocity (ft/s discharge ra shear stress shear veloci unit stream Froude num friction facto threshold gr n channel mat measured D	ea ea he area ec) ate, Q (cfs) ate, Q (cfs) ber ((lbs/ft sq) ty (ft/sec) power (lbs/ft/s ber r u/u* ain size (mm) erial 84 (mm)	slope (%) "n" d mean wet P hyd rad w/d rati
up steep EOW halweg EOW		Eight of ins distance (ff) 0 11 19 24 28 29.5 33 33.7 34.4 34.8 36.5 38 39 40 40.7 41.4 43 48 70 98 127 144	description: trument (ff): 3.22 6.08 6.1 6.64 6.8 6.95 8.03 8.35 8.77 9.24 9.33 9.51 9.63 9.23 7.93 6.37 6.01 5.95 6.13 6.16	Pool elevation 96.95 94.09 94.07 93.53 93.37 93.22 92.14 91.82 91.4 90.93 90.84 90.66 90.54 90.94 90.94 92.24 93.8 94.16 94.22 94.04 93.86		bankfull 6.8 93.37 imension 20.6 11.7 2.8 3.3 0.0 ydraulics 0.00 0.	top of bank 6.37 93.8 x-section ar width d max bank ht W flood prof velocity (ft/s discharge ra shear stress shear veloci unit stream Froude num friction facto threshold gr n channel mat measured D relative rouc	ea ea he area ec) ate, Q (cfs) ate, Q (cfs) ber ((lbs/ft sq) ty (ft/sec) power (lbs/ft/s ber r u/u* ain size (mm) erial 84 (mm)	slope (%) th d mean wet P hyd rad w/d rati ent ratio


							÷	·		
Cross Se	ction	ana sa	2.044°.044		1226	19	ALCONTACT OF	SEST. 35-4	计 不计 行	A. C. and
				X-S	ection F	Pool 8 @ sta	tion 445	÷ .		
99 т							s var hugeste victorienske fingelik ogs	unitari ar an an an an	te na konstantat a	K in the second s
98 -	<u> </u>									nicorrie Ticorrie
97 -	\bot									
96	<u> </u>	<u>(</u> 22 - 22 - 3								
Elevation (ft)	<u>م</u>									
ation										
8 94 + 9 94 +										ale an
^ш 93 -		1								
92	ا ایت ایت مراجع مراجع		1							i Statuci
91 -						i la de de la 1132301			10 I I 4 5 5	
90 -			2428-939 - 34 <u>8</u> -3	A STREET, STREE	Saul salari	3.8. 3 .2.2.1	in his had a down	<u> Nadand - Alada</u>	<u> </u>	
0		10	20	30	4	0	50 6	0	70	80
			section	Pool 						
			description	Pool 						
			description: trument (ft):	Pool 		FS		Wina	channel	Manning
notes	h omit pt.	aight of ins distance (ff)	description	Pool 		FS bankfull	FS top of bank	Wifpa (ft)	channel slope (%)	Manning's
notes up steep	omit	distance	description: trument (ft): -FS (ft) 2.61	Pool 101.02 elevation 98.41		bankfull 6.97	top of bank 5.95			
	omit pt. # - #	distance (it) 1 4	description trument (ft): FS (ft) 2.61 5.37	Pool 101.02 elevation 98.41 95.65		bankfull	top of bank			
	omit pt.	distance (ft) 1 4 7	description trument (ft): FS (ft) 2.61 5.37 6.48	Pool 101.02 elevation 98.41 95.65 94.54		bankfull 6.97 94.05	top of bank 5.95 95.07			
	omit pt. # - #	distance (II) 1 4 7 10	description trument (ft): FS (ft) 2.61 5.37 6.48 6.97	Pool elevation 98.41 95.65 94.54 94.05		bankfull 6.97 94.05 dimension:	top of bank 5.95 95.07	(ft) 	slope (%)	* * n*
	omit pt. # - #	distance (it) 1 4 7 10 11	description: trument (ft): FS (ft) 2.61 5.37 6.48 6.97 7.3	Pool elevation 98.41 95.65 94.54 94.05 93.72		bankfull 6.97 94.05 dimension: 19.5	top of bank 5.95 95.07 s x-section are	(ft) 	slope (%)	
up steep	omit pt. # - # # - # # - # # # - # # # #	distance. (it) 1 4 7 10 11 12.3	description: trument (ft): FS (ft) 2.61 5.37 6.48 6.97 7.3 8.16	Pool elevation 98.41 95.65 94.54 94.05		bankfull 6.97 94.05 dimension:	top of bank 5.95 95.07 x-section are width	(ft) 	slope (%)	d mean
up steep EOW: dept		distance (II) 1 4 7 10 11 12.3 13 14.3	description trument (ft): FS (ft) 2.61 5.37 6.48 6.97 7.3 8.16 9.77 9.89	Pool elevation 98.41 95.65 94.54 94.05 93.72 92.86 91.25 91.13		bankfull 6.97 94.05 dimension 19.5 10.5 3.0 4.0	top of bank 5.95 95.07 x-section are width d max bank ht	(ft) a	slope (%) 1.9 12.9 1.5 5.6	d mean wet P hyd radi w/d ratio
up steep EOW: dept		distance (ff) 1 4 7 10 11 12.3 13 14.3 15.5	description trument (ft): FS (ft) 2.61 5.37 6.48 6.97 7.3 8.16 9.77 9.89 9.93	Pool elevation 98.41 95.65 94.54 94.05 93.72 92.86 91.25 91.13 91.09		bankfull 6.97 94.05 dimension: 19.5 10.5 3.0	top of bank 5.95 95.07 x-section are width d max	(ft) a	slope (%) 1.9 12.9 1.5	d mean wet P hyd radi
up steep EOW: dept EOW		distance (ff) 1 4 7 10 11 12.3 13 14.3 15.5 16.5	description trument (ft): FS (ft) 2.61 5.37 6.48 6.97 7.3 8.16 9.77 9.89 9.93 9.62	Pool elevation 98.41 95.65 94.54 94.05 93.72 92.86 91.25 91.13 91.09 91.4		bankfull 6.97 3 94.05 dimension: 19.5 10.5 3.0 4.0 0.0	top of bank 5.95 95.07 x-section are width d max bank ht W flood pron	(ft) a e area	slope (%) 1.9 12.9 1.5 5.6 0.0	d mean wet P hyd radi w/d ratio ent ratio
up steep EOW: dept EOW		distance (f) 1 4 7 10 11 12.3 13 14.3 15.5 16.5 17.2	description trument (ft): FS (ft) 2.61 5.37 6.48 6.97 7.3 8.16 9.77 9.89 9.93 9.93 9.62 9.29	Pool 101.02 elevation 98.41 95.65 94.54 94.05 93.72 92.86 91.25 91.13 91.09 91.4 91.73		bankfull 94.05 dimension: 19.5 10.5 3.0 4.0 0 .0 hydraulics	top of bank 5.95 95.07 S x-section are width d max bank ht W flood pron	(ft) a e area	slope (%) 1.9 12.9 1.5 5.6 0.0	d mean wet P hyd radi w/d ratio
up steep EOW: dept EOW		distance (II) 1 4 7 10 11 12.3 13 14.3 15.5 16.5 17.2 18.8	description: trument (ft): FS (ft) 2.61 5.37 6.48 6.97 7.3 8.16 9.77 9.89 9.93 9.62 9.29 8.72	Pool elevation 98.41 95.65 94.54 94.05 93.72 92.86 91.25 91.13 91.09 91.4 91.73 92.3		bankfull 6.97 94.05 dimensions 19.5 10.5 3.0 4.0 0.0 hydraulics 0.0	top of bank 5.95 95.07 x-section are width d max bank ht W flood pron	(ft) a e area c)	slope (%) 1.9 12.9 1.5 5.6 0.0	d mean wet P hyd radi w/d ratio ent ratio
up steep EOW: dept EOW		distance (II) 1 4 7 10 11 12.3 13 14.3 15.5 16.5 17.2 18.8 19.8	description: trument (ft): FS (ft) 2.61 5.37 6.48 6.97 7.3 8.16 9.77 9.89 9.93 9.93 9.62 9.29 8.72 8.25	Pool 		bankfull 6.97 94.05 dimensions 19.5 10.5 3.0 4.0 0.0 hydraulics 0.0 0.0	top of bank 5.95 95.07 x-section are width d max bank ht W flood pron	(ft) a e area c) e, Q (cfs)	slope (%) 1.9 12.9 1.5 5.6 0.0	d mean wet P hyd radi w/d ratio ent ratio
up steep EOW: dept EOW MB		distance (II) 1 4 7 10 11 12:3 13 14.3 15.5 16.5 17.2 18.8 19.8 20.5	description: trument (ft): FS (ft) 2.61 5.37 6.48 6.97 7.3 8.16 9.77 9.89 9.93 9.62 9.29 8.72 8.25 6.93	Pool 101.02 elevation 98.41 95.65 94.54 94.05 93.72 92.86 91.25 91.13 91.09 91.4 91.73 92.3 92.77 94.09		bankfull 6.97 94.05 dimensions 19.5 10.5 3.0 4.0 0.0 hydraulics 0.0	top of bank 5.95 95.07 x-section are width d max bank ht W flood pron	(ft) a e area c) e, Q (cfs) ((lbs/ft sq)	slope (%) 1.9 12.9 1.5 5.6 0.0	d mean wet P hyd radi w/d ratio ent ratio
up steep EOW: dept EOW MB	Omit pl. pl. <	distance (II) 1 4 7 10 11 12.3 13 14.3 15.5 16.5 17.2 18.8 19.8 20.5 21 25	description trument (ft): FS (ft) 2.61 5.37 6.48 6.97 7.3 8.16 9.77 9.89 9.93 9.62 9.29 8.72 8.25 6.93 5.95 5.9	Pool elevation 98.41 95.65 94.54 94.05 93.72 92.86 91.25 91.13 91.09 91.4 91.73 92.3 92.77 94.09 95.07		bankfull 6.97 94.05 dimensions 19.5 10.5 3.0 4.0 0.0 hydraulics 0.0 0.00	top of bank 5.95 95.07 x-section are width d max bank ht W flood pron velocity (ft/se discharge rat shear stress	(ft) a e area c) e, Q (cfs) ((lbs/ft sq) / (ft/sec)	slope (%) 1.9 12.9 1.5 5.6 0.0	d mean wet P hyd radi w/d ratio ent ratio
up steep EOW: dept EOW MB TOB		distance (II) 1 4 7 10 11 12.3 13 14.3 15.5 16.5 16.5 17.2 18.8 19.8 20.5 21 25 35	description trument (ft): FS (ft) 2.61 5.37 6.48 6.97 7.3 8.16 9.77 9.89 9.93 9.62 9.29 8.72 8.25 6.93 5.95 5.9 6.03	Pool elevation 98.41 95.65 94.54 94.05 93.72 92.86 91.25 91.13 91.09 91.4 91.73 92.3 92.77 94.09 95.07 95.12 94.99		bankfull 6.97 94.05 dimension 19.5 10.5 3.0 4.0 0.0 0.0 0.00 0.00 0.000 0.000 0.000 0.000 0.000	top of bank 5.95 95.07 x-section are width d max bank ht W flood pron velocity (ft/se discharge rat shear stress shear velocity unit stream p Froude numb	(ft) a e area c) c, Q (cfs) ((lbs/ft sq) / (ft/sec) ower (lbs/ft/ er	slope (%) 1.9 12.9 1.5 5.6 0.0	d mean wet P hyd radi w/d ratio ent ratio
up steep EOW: dept EOW MB		distance (() 1 4 7 10 11 12.3 13 14.3 15.5 16.5 17.2 18.8 19.8 20.5 21 25 35 55	description trument (ft): FS (ft) 2.61 5.37 6.48 6.97 7.3 8.16 9.77 9.89 9.93 9.62 9.29 8.72 8.25 6.93 5.95 5.9	Pool elevation 98.41 95.65 94.54 94.05 93.72 92.86 91.25 91.13 91.09 91.4 91.73 92.3 92.77 94.09 95.07 95.12		bankfull 6.97 94.05 dimension: 19.5 10.5 3.0 4.0 0.0 0.0 0.00 0.00 0.000 0.000	top of bank 5.95 95.07 x-section are width d max bank ht W flood pron velocity (ft/se discharge rat shear stress shear velocity unit stream p	(ft) a e area c) e, Q (cfs) ((lbs/ft sq) / (ft/sec) ower (lbs/ft/ er u/u*	slope (%) 1.9 12.9 1.5 5.6 0.0 sec)	d mean wet P hyd radi w/d ratio ent ratio

Andrewski stere

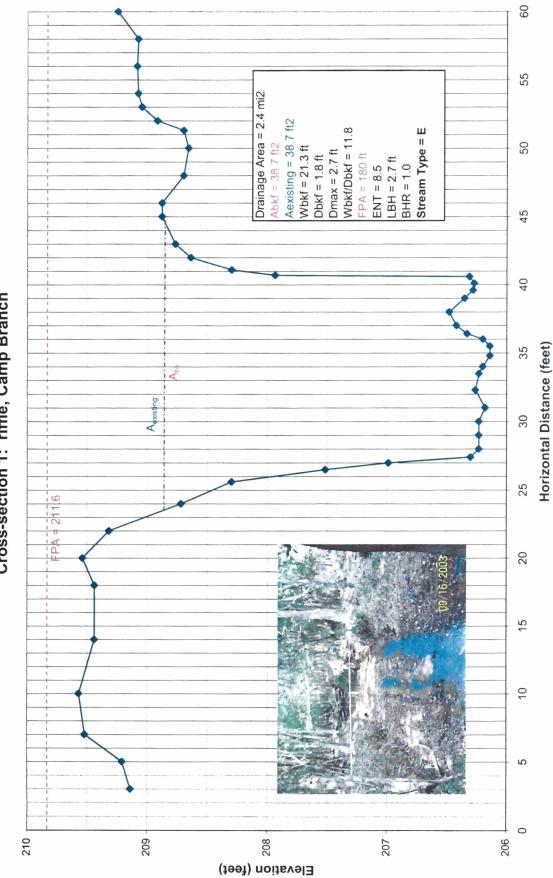

gijetarski slovede 20 Na oraz v sa reserv

aparta a distanggi Santa a distanggi


Alexandra da casa da se

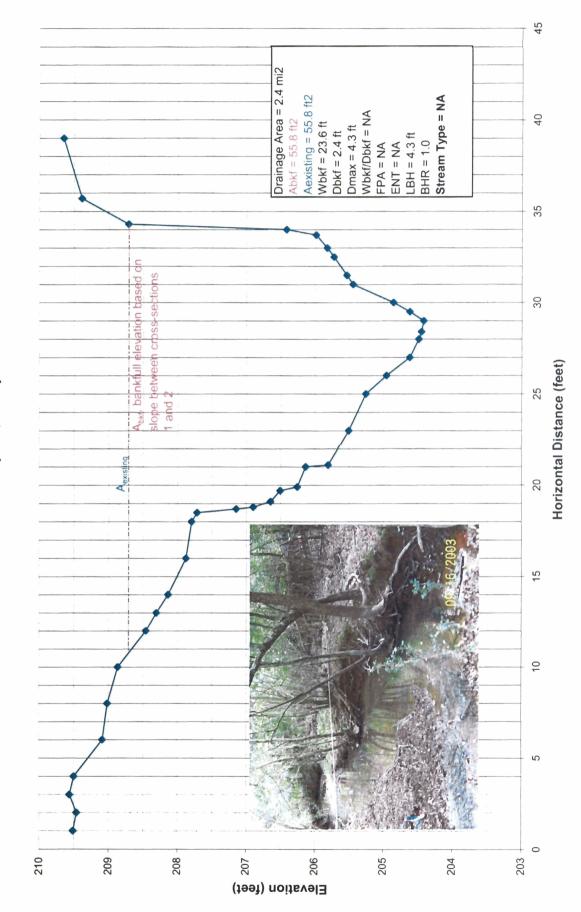
lanelrafarannaldanraf dan San 10 2002 11.15.56

	50 50 Size Range (r 0.062	362	Percent Run: Percent Glide: Total # 20.0 # #	tun: de: # # #		Be	Pebble Count	4								
medium sand coarse sand	0.13 0 0.25 0 0.5	0.25 0.5 1	4.0 6.0	# # # # #	100%	Note: Dan Nicholas Weighted	1 Nichola	is Weight		Pebble Count,	lt. –					
very fine gravel		V 4 0	8.0	* * *	%06											
fine gravel		0 00	8.0	# #	80%					Y	No N					
medium gravel	11	11	7.0	# #	+ %02											
coarse gravel	16 22	22	2.0	UI	%09											
very coarse gravel		45	3.0	enT 16	50% + 40% +					<u> </u>						
small cobble		8 06	1.0	# #	30%	5			X	1						
large cobble	90 1 128 1	128	0.0	LCGU	20%											
very large cobble small boulder		256 362	0.0	be ##	10%					•	•					
small boulder		512	Τ	##	+ %0											
medium boulder		1024	Π	# #	0.01	5	0.1		*	10	~	100		1000		10000
large boulder	2048 20	2048 4096	0.0	# #	ē,	Particle Size (mm)			ulative Pe	ercent 🔶	Percent Item	em Riffle		Pool Run		Glide
bedrock		8	T			Size percent less than (mm)	less than	(mm)			Daro	ont hu cub	atrata true			
	Weighted Count:	ount:	100	D16	6	D35 D	D50	D84	D95	silt/clay	s	and gravel cobb	suale type	0	boulder	hedrock
True	True Total Particle Count:	-tunt-	100	NN#		1 1 1			00		ļ				00000	

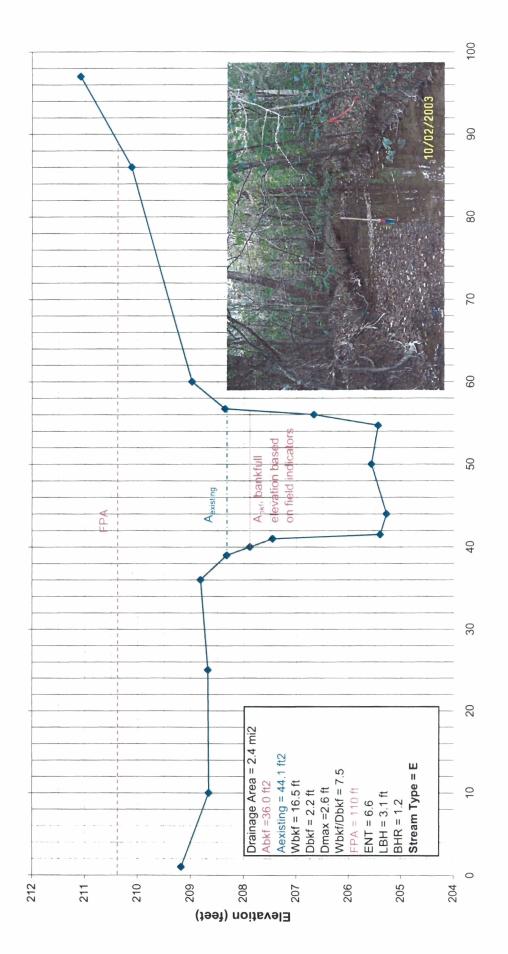


Î

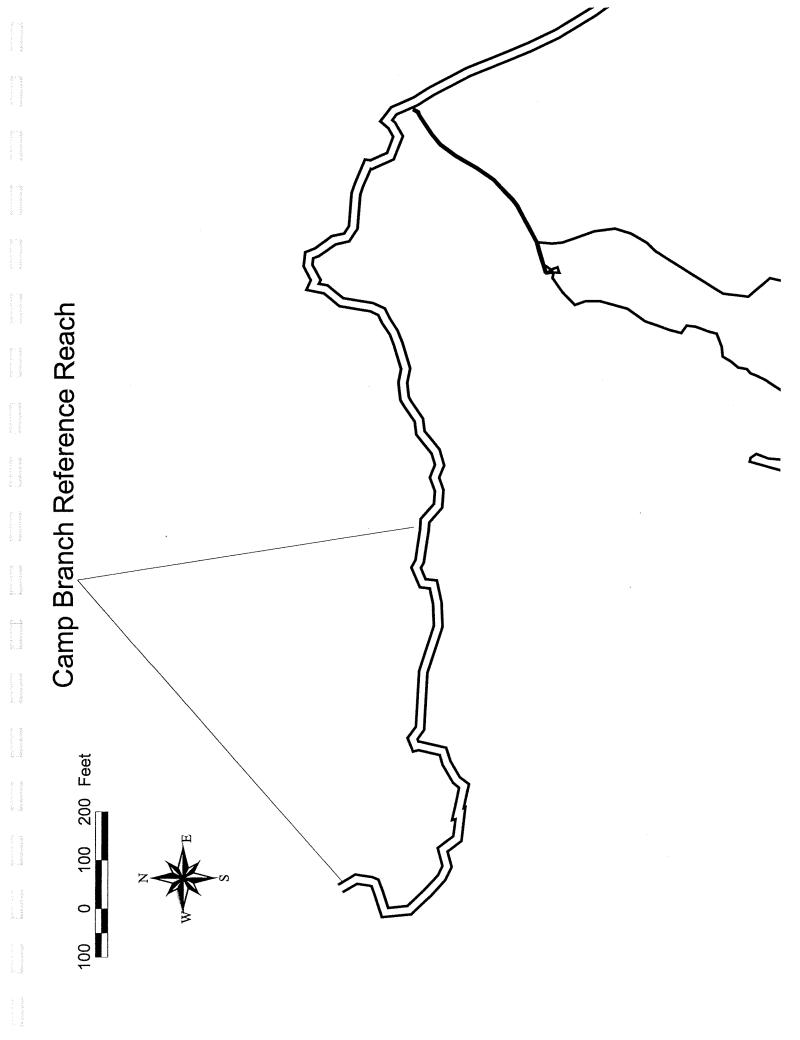
	X-sect	X-sect DA (mi ²) A _{bkf} (ft ²)		$A_{existing}$ (ft ²)	W _{bkf} (ft)	D _{ave} (ft)	D _{max} (ft)	(ft ²) W _{bkf} (ft) D _{ave} (ft) D _{max} (ft) W/D Ratio	FPA	Entrench LBH (ft)		BHR	Stream Type
					Camp Bi	ranch Re	ach 1 (Up	Camp Branch Reach 1 (Upstream of Headcut)	eadcut)				
	+		38.7	38.7	21.3	1.8	2.7	11.8	180	8.5	2.7	-	Ł
	ъ С	4. 4.	36	44.1	16.5	2.2	2.6	7.5	110	6.6	3.1	1.2	1
Riffles	average	2.4	37.4	41.4	18.9	2.0	2.7	9.7	145.0	7.6	2.9	1.1	
	min	2.4	36.0	38.7	16.5	1.8	2.6	7.5	110.0	6.6	2.7	1.0	
	max	2.4	38.7	44.1	21.3	2.2	2.7	11.8	180.0	8.5	3.1	1.2	
Pools	N	2.4	55.8	55.8	23.6	2.4	4.3	1			4.3	-	****


Bishop Property Refence Dimension: Camp Branch Area

.


Cross-section 1: riffle, Camp Branch

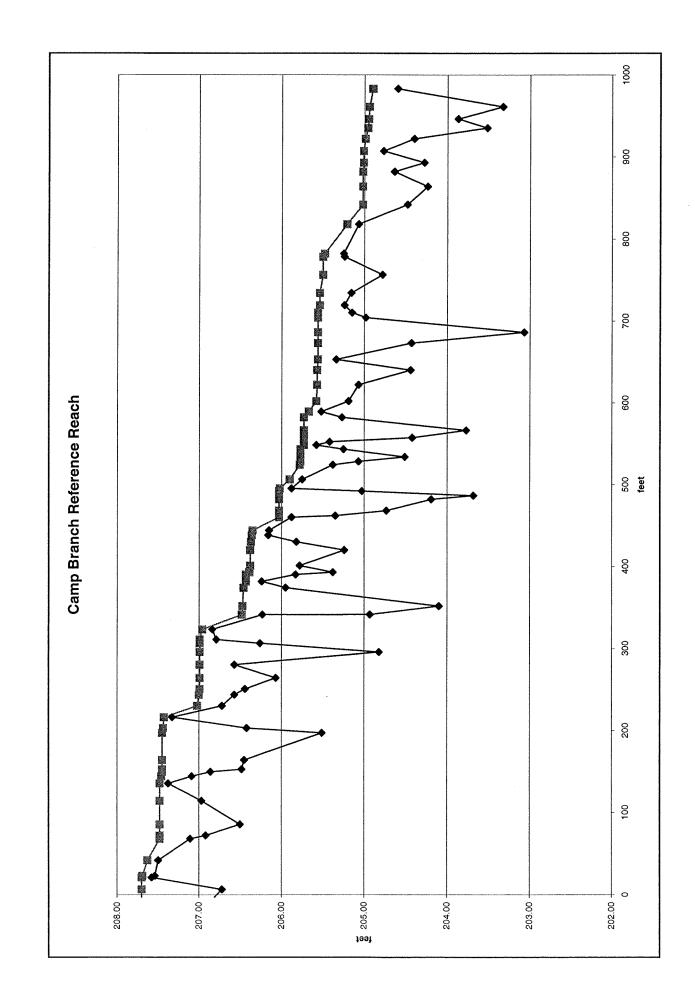
ſ



Cross-section 2: pool, Camp Branch

Camp Branch Referecne Reach Pattern

					•		pool to				
		pool to pool	meander		radius of		pool/bkf	meander/	h V A	bkf beltwidth/ rad/bkf	rad/bkf
Camp Branch		spacing	length	beltwidth curv	curv	bkf width	width	width	-	bkf width	width
Ref Reach	Median	74	133	43	41	19.6	3.8		6.8	2.2	2.1
	Range low	45	66	30	17		2.3		3.4	1.5	0.9
	Range high	145	240	97	200		7.4		12.2	4.9	10.2


Pattern: Camp Branch

	Upstream to Ford		
10			Radius of
spacing	Meander	Beltwidth	curv
(feet)	Length (feet)	(feet)	(feet)
45	66	30	16.7
46	85	31	23.4
50	88	33	27.1
51	89	34	27.1
53	92	34	28.1
55	95	35	28.6
56	101	36	29.2
58	102	38	29.7
61	103	39	29.7
62	112	40	32.3
64	116	42	32.8
65	123	43	36.5
73	126	46	40.6
73	133	46	40.6
75	135	46	50.0
62	137	52	53.3
62	143	52	53.3
62	147	57	100.0
62	155	63	106.7
89	159	68	116.7
95	172	89	120.0
112	175	97	133.3
118	182		133.3
120	200		133.3
122	209		200.0
122	237		
140	240		
145			
74	133	42.5	40.6
45-145	66-240	30-97	17-200
	Pool to pool spacing (feet) Ups spacing (feet) 45 45 50 51 51 53 53 55 64 64 65 64 65 56 73 73 74 74		Upstream to Fond Meander Be ng Meander Be 10 Length (feet) Length (feet) 85 85 88 86 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 95 95 95 133 1101 112 135 135 143 135 155 155 137 156 172 133 133 133 133 133 133 133 133 133

Camp Branch Profile Survey conducted by Corri & Kendrick (to sta 602) and Grant, Heather, & Ben (rest of stream) The following calculations are a result of printing out the profile graph (as originally surveyed) and amending point by point Revised Bed Revised WS

	Revised	Bed	Revised WS		
Station	Feature	Elevation	Elevation	WS Slope Riffle Slope	Pool Slope
-3		206.81	207.70		
6.4		206.72 207.58	207.70 207.70		
21 23	TR1	207.58	207.69		
42		207.50	207.63		
68	BR1	207.11	207.48	0.0047	
72		206.92	207.48		
85.5	P1	206.50	207.48		
114	TD0	206.97	207.48		0.0000
135 144	TR2	207.38 207.09	207.48 207.46		
149.4	BR2	206.86	207.45	0.0021	
152.5		206.48	207.45		
164		206.45	207.45		
197	P2	205.51	207.45		0.0003
203	700	206.42	207.44		
216 230	TR3	207.33 206.72	207.43 207.02		
243.5		206.57	207.02		
250.5	BR3	206.44	206.99	0.0128	
264		206.07	206.99		
280		206.57	206.99		
295.5	P3	204.82	206.99		0.0000
306	704	206.26	206.99		
310.5	TR4	206.79 206.84	206.99 206.96		
323 341	BR4	206.23	206.48	0.0167	
341.1		204.93	206.48		
351.5	P4	204.10	206.47		0.0012
374		205.95	206.46		
381.5	TR5	206.24	206.43		
390		205.83	206.43		
393 401	BR5	205.38 205.78	206.39 206.38	0.0026	
420	Dillo	205.24	206.38	0.0020	
430	P5	205.82	206.37		0.0005
438	TR6	206.16	206.36		
444		206.15	206.35		
460	BR6	205.88	206.03	0.0150	
462		205.35	206.03		
468 482	P6	204.73 204.19	206.03 206.03		0.0003
486.5	10	203.68	206.03		0.0000
492		205.03	206.03		
495	TR7	205.88	206.02		
506		205.75	205.90		
524	BR7	205.38	205.78	0.0083	
528 533.5	P7	205.07 204.51	205.77 205.77		0.0005
543	TR8	205.25	205.77		0.0005
548		205.58	205.73		
552	BR8	205.42	205.73	0.0044	
557		204.42	205.73		
566	P8	203.77	205.73		0.0000
582 589	TR9	205.27	205.73		
	BR9	205.52 205.19	205.67 205.58	0.0075	
602 622	0110	205.07	205.57	0.0073	
640		204.44	205.57		
653		205.34	205.56		
673	P9	204.43	205.56		0.0002
686		203.07	205.56		
704 710	TR9b	204.98 205.15	205.56 205.56		
710	1130	205.15	205.56		
734	BR9b	205.16	205.54	0.0008	
756	P9b	204.78	205.50		0.0009
778	TR10	205.24	205.50		
782		205.25	205.48		
818	8840	205.07	205.21	0.0075	
842 864	BR10	204.48 204.24	205.02 205.02	0.0075	
882	P10	204.24	205.02		0.0002
893		204.28	205.01		
907	TR11	204.77	205.01		
922		204.40	204.99	0.0018	
935	BR11	203.52	204.96		
946	D11	203.87	204.95 204.94		0.0013
961 983	P11 TR12	203.33 204.60	204.94 204.90		0.0013
500		201.00	_00		
upstr	eam to hea	dout:	ave	0.0029 0.0070	
			min	0.0008	0.0000
			max	0.0167	0.0013

\$

Maighten Lennie Coult															
Percent Riffle:	50		Percent Run:	Sun:											
Percent Pool:	50		Percent Glide:	lide:			Pebble Count,	ount,							
Material	Size Range (n	(mm)	Total #	E											
silt/clay	0	0.062	14.0	#			1								
very fine sand	0.062	0.13	0.0	##											
fine sand	0.13	0.25	0.0	# #		Note	: Camp Bra	Note: Camp Branch Reference Reach (Reach 1	ence Reac	h (Reach 1)					
medium sand	0.25	0.5	0.0	##											
coarse sand	0.5	+	7.0	##					Pe	Pebble Count,	-				
very coarse sand	1	2	1.0	##	100%										
very fine gravel	2	4	10.0	##	%06										
fine gravel	4	9	8.0	# #			 			>					
fine gravel	9	8	16.0	# #	80%										
medium gravel	ω	11	18.0	##	20%						×				
medium gravel	11	16	9.0	#											
coarse gravel	16	22	8.0	##	ر ۳			 			 			d na d na d na d na	
coarse gravel	22	32	5.0	# #	1ar 50%										
very coarse gravel	32	45	1.0	##											
very coarse gravel	45	64	2.0	##	190 40%										
small cobble	64	06	1.0	##	ії 30%				1	~					
medium cobble	06	128	0.0	# #	eut					*					
large cobble	128	180	0.0	#	erc V V					•				-	
very large cobble	180	256	0.0	# #	Ē 10%					•	•				
small boulder	256	362	0.0	# #	70U						•••				
small boulder	362	512	0.0	# #	Š							- 001		ç	
medium boulder	512	1024	0.0	# #		0.01	0.1		-	10		100	1000	00	10000
large boulder	1024	2048	0.0	#		Particle Size (mm)	ize (mm)	- Cun		٠	Percent Item	→ Riffle	Pool Run		
very large boulder	2048	4096	0.0	# #											
bedrock			0.0	#		Size pe	Size percent less than (mm)	han (mm)			Percer	Percent by substrate type	ate type		
	Weighted Count:	d Count:	100		D16	D35	D50	D84	D95	silt/clay	sand	gravel	cobble	boulder	bedrock
True	Taulo Totol Dodialo Count		100		0 640	A GG	0 4	47	00	4 4 0/	/00	1022	4 0/	/00/	700

APPENDIX E

CATENA GROUP FRESHWATER MUSSEL SURVEY

410-B Millstone Drive Hillsborough, NC 27278 (919) 732-1300

Freshwater Mussel Survey

Bishop Property Stream Restoration Mitigation Site Anson County North Carolina

Prepared For:

EcoScience Corporation 1101 Haynes Street, Suite 101 Raleigh, North Carolina 27604

Prepared By:

The Catena Group, Inc. Hillsborough, North Carolina

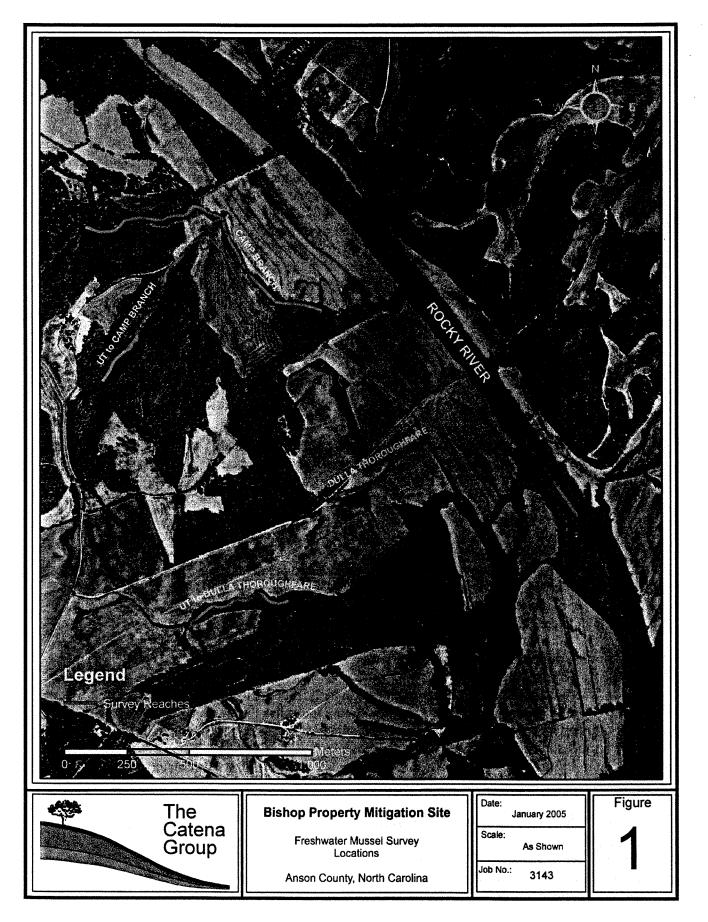
January 24, 2004

Michael G

Michael G. Wood

INTRODUCTION

The North Carolina Ecosystem Enhancement Program (NCEEP) has contracted EcoScience Corporation to evaluate the Bishop Property (Bishop Site) for its potential as a mitigation site. The Bishop Site is in the Rocky River Subbasin of the Yadkin/Pee Dee River Basin in Anson County (Figure 1). The proposed mitigation on this property will include the restoration of an estimated total of 7600 linear feet of stream on Camp Branch, an Unnamed Tributary (UT) to Camp Branch, Dulla Thoroughfare, and UT to Dulla Throughfare. Although no restoration is planned for the mainstem of the Rocky River, there is potential for its waters to be impacted as a result of restoration efforts planned for Dulla Throughfare just above where it joins with the mainstem Rocky River. The federally endangered Carolina heelsplitter (*Lasmigona decorata*) is known to occur in the Rocky River Subbasin of the Yadkin/Pee Dee River Basin and is listed by the US Fish and Wildlife Service as occurring in Anson County, thus The Catena Group, Inc. was retained by EcoScience Corporation to conduct surveys for this species.


WATERS IMPACTED: Camp Branch, UT to Camp Branch, Dulla Thoroughfare, UT to Dulla Thoroughfare, and Rocky River

Camp Branch originates at the westernmost portion of the property, approximately 1.5 river miles (RM) from its confluence with Rocky River. The upstream portion of Camp Branch (the section upstream of its confluence with UT Camp Branch) meanders through a wooded area with a 1-2 meter (3-6.5 foot) wide channel and 1-3 meter (3.5-10 feet) high moderately eroded clay banks. The substrate in this portion of the stream was a sand-cobble mix.

The confluence with the UT is near the farm road that used to cross Camp Branch. The road crossing has been removed, however a beaver dam has been recently constructed that has ponded approximately 600 feet of channel. From below the beaver dam downstream to the Rocky River, the channel widens to an average of 6 meters (19.7 feet) and the banks become deeply incised, up to 7 meters (23 feet) high in some places. The sand-cobble substrate includes large areas of bedrock. The riparian corridor in this section is very narrow, flanked on both sides with active crop fields. Stream flow ranged from shallow riffles to slow moving runs with beaver activity observed throughout the reach.

UT to Camp Branch originates approximately 1200 meters upstream of its confluence with Camp Branch. This shallow stream meanders through a wooded lot for about 600 meters before entering a small impoundment. UT to Camp Branch exits the pond to the northeast where it has been ditched through its remaining length before converging with Camp Branch. Within the area surveyed, the UT ranges from 0.5-1.0 meters (2-3.5 feet) in width.

Dulla Thoroughfare and **UT to Dulla Thoroughfare** occur in the southeastern portion of the tract with the UT connecting Dulla to the Rocky River. Cursory habitat examinations revealed the streams to be heavily degraded and often ditched through out the majority of the property. Due to these factors and their relatively small size, it was determined that they contained no appropriate habitat for freshwater mussels.

TCG- Freshwater Mussel Surveys Bishop Tract Mitigation Site, Anson County, NC **Rocky River** originates in Cabarrus County over 30 RM to the northwest of the Bishop Property. It flows east, forming the southern border of Stanley County until it joins the Pee-Dee River just downstream of the survey area. Within the surveyed reach, the Rocky River was approximately 80 meters (260 feet) wide with a maximum depth of approximately 7 feet. Substrate ranged from compact gravel-cobble in the main channel to silty clay along the banks. River banks were approximately 3 meters (10 feet) high and often vertical. A moderate amount of windthrow and the resulting woody debris was apparent along the rivers edge. There was a narrow wooded buffer separating the large tracts of surrounding agricultural land from the Rocky River within the surveyed reach.

SPECIES DESCRIPTION

CAROLINA HEELSPLITTER (Lasmigona decorata) Lea 1852

Status: Endangered Family: Unionidae Listed: July-24-1992

Characteristics

The Carolina heelsplitter (*Lasmigona decorata*), originally described as *Unio decoratus* by (Lea 1852), synonymized with *Lasmigona subviridis Conrad*, (Johnson 1970), and later separated as a distinct species (Clarke 1985), is a federally Endangered freshwater mussel, historically known from several locations within the Catawba and Pee Dee River systems in North Carolina and the Pee Dee, Savannah and possibly the Saluda River systems in South Carolina.

The Carolina heelsplitter is characterized as having an ovate, trapezoid-shaped, unsculptured shell. The outer surface of the shell ranges from greenish brown to dark brown in color, with younger specimens often having faint greenish brown or black rays. The shell's nacre is often pearly white to bluish white, grading to orange in the area of the umbo (Keferl 1991). The hinge teeth are well developed and heavy and the beak sculpture is double looped (Keferl and Shelly 1988). Morphologically, the shell of the Carolina heelsplitter is very similar to the shell of the green floater (Clarke 1985), with the exception of a much larger size and thickness in *L. decorata* (Keferl and Shelly 1988).

Prior to collections in 1987 and 1990 by Keferl (1991), *L. decorata* had not been collected in the 20th century and was known only from shell characteristics. Because of its rarity, very little information of this species biology, life history, and habitat requirements was known. Feeding strategy and reproductive cycle of the Carolina heelsplitter have not been documented, but are likely similar to other native freshwater mussels (USFWS 1996).

The feeding processes of freshwater mussels are specialized for the removal (filtering) of suspended microscopic food particles from the water column (Pennak 1989). Documented food sources for freshwater mussels include detritus, diatoms, phytoplankton and zooplankton (USFWS 1996).

TCG- Freshwater Mussel Surveys Bishop Tract Mitigation Site, Anson County, NC Freshwater mussels have complex reproductive cycles, which include a larval stage (glochidium) that is an obligatory parasite on a fish (Pennak 1989). The glochidia develop into juvenile mussels and detach from the "fish host" and sink to the stream bottom where they continue to develop, provided suitable substrate and water conditions are available (USFWS 1996). Many species of naiades require a particular species of fish to serve as the host. The host species(s) for the Carolina heelsplitter is unknown (USFWS 1996).

Distribution and Habitat Requirements

Currently the Carolina heelsplitter has a very fragmented, relict distribution. Until recently, it was known to be surviving in only six streams and one small river (USFWS 1996):

- 1. Waxhaw Creek (Catawba River system) in Union County, North Carolina
- 2. Goose Creek (Pee Dee River system) in Union County, North Carolina
- 3. Lynches River (Pee Dee River system), in Chesterfield, Lancaster and Kershaw Counties, South Carolina
- 4. Flat Creek, a tributary to the Lynches River in Lancaster County, South Carolina
- 5. Turkey Creek (Savannah River system) in Edgefield County, South Carolina
- 6. Mountain Creek (tributary to Turkey Creek) in Edgefield County, South Carolina
- 7. Beaverdam Creek (tributary to Turkey Creek) in Edgefield County, South Carolina

In the summer of 2004, a population of this species was discovered in Little Fishing Creek (Catawba River system) in Chester County, South Carolina (personal observations). Additionally, a range extension of the Waxhaw Creek population was documented into Lancaster County, South Carolina (John Alderman, personal Communication 2004).

Habitat for this species has been reported from small to large streams and rivers as well as ponds. These ponds are believed to be millponds on some of the smaller streams within the species' historic range (Keferl 1991). Most individuals have been found along well-shaded streambanks with mud, muddy sand, or muddy gravel substrates. The stability of stream banks appears to be very important to this species ((Keferl 1991).

Threats to Species

The low numbers of individuals and the restricted range of each of the surviving populations make them extremely vulnerable to extirpation from a single catastrophic event or activity (USFWS 1996). The cumulative effects of several factors, including sedimentation, point and non-point discharge, and stream modification (impoundments, channelization, etc.) has contributed to the decline of this species throughout its range (USFWS 1996).

Siltation resulting from improper sedimentation control of various land usages, including agricultural, forestry, and developmental activities, has been recognized as a major contributing factor to degradation of mussel populations (USFWS 1996). Siltation has been documented to be extremely detrimental to mussel populations by degrading substrate and water quality, increasing potential exposure to other pollutants, and by direct smothering of mussels (Ellis 1936), (Markings and Bills 1979)). Sediment accumulations of less than 1 inch have been shown to cause high mortality in most mussel species (Ellis 1936).

Sewage treatment effluent has been documented to significantly affect the diversity and abundance of mussel fauna (Goudreau, Neves et al. 1988). Goudreau, Neves et al. (1988) found that recovery of mussel populations might not occur for up to two miles below points of chlorinated sewage effluent.

The impact of impoundments on freshwater mussels has been well-documented (USFWS 1992 a), Neves 1993). Construction of dams transforms lotic habitats into lentic habitats, which results in changes with aquatic community composition. Muscle Shoals on the Tennessee River in northern Alabama, once the richest site for naiads (mussels) in the world, is now at the bottom of Wilson Reservoir and covered with 19 feet of muck (USFWS 1992 b). Large portions of all of the river basins within the Carolina heelsplitter's range have been impounded and this is believed to be a major factor contributing to the species decline (USFWS 1996).

The introduction of exotic species such as the Asiatic clam (*Corbicula fluminea*) and zebra mussel (*Dreissena polymorpha*) has also been shown to pose significant threats to native freshwater mussels. The Asiatic clam is now established in most of the major river systems in the United States (Fuller and Powell 1973); including those streams still supporting surviving populations of the Carolina heelsplitter (USFWS 1996). Concern has been raised over competitive interactions for space, food and oxygen with this species and native mussels, possibly at the juvenile stages (Neves and Widlak 1987), (Alderman 1995). The zebra mussel is not known from any waterbodies supporting the Carolina heelsplitter (USFWS 1996).

SURVEY EFFORTS

Pre Survey Investigation

Prior to conducting in-stream surveys, a review of previous surveys that had taken place in the project area was conducted. Sources consulted include the North Carolina Natural Heritage Program (NCNHP) systematic inventory (database) of rare plant and animal species and the North Carolina Wildlife Resources Commission (NCWRC). While there were no records within one mile of the areas to be impacted, there is a historical record of the Carolina heelsplitter from the mainstem of the Yadkin-Pee Dee River near Leak Island, approximately 3 miles downstream from the Bishop Tract.

Mussel Surveys

Michael Wood, Shay Garriock, Kate Montieth, and Sharon Snider of The Catena Group investigated the Bishop Tract Stream Restoration site on January 3, 2005. Where appropriate mussel habitat was present, surveys were conducted using the standard USFWS recommendations for aquatic species of 100 meters upstream of the most upstream point of impact to 400 meters downstream of the most downstream point of impact.

TCG- Freshwater Mussel Surveys Bishop Tract Mitigation Site, Anson County, NC

Methodology and Results

Visual surveys were conducted using batiscopes and tactile methods in each stream except the mainstem Rocky River, which required SCUBA surveys. Searches for relic shells were also conducted concurrently with in-stream surveys. No freshwater mussels were found during the 12 person hours spent surveying the Bishop property. The specific results of each survey reach (Figure 1) are detailed below.

Camp Branch:

Deeply incised throughout most of the survey reach, especially in its lower portion, Camp Branch was likely heavily impacted by the past and current agricultural practices in its watershed. Additionally, the lower portions are heavily impacted by beaver activity. Within the upper surveyed portion (above its UT confluence) one *Pysella sp.* snail was found in Camp Branch. Below the UT confluence, one shell of the introduced Asian clam (*Corbicula fluminea*) was found. No freshwater mussels were located in the surveyed reach of Camp Branch.

UT Camp Branch:

Due to its predominantly wooded surroundings, this UT to Camp Branch remains relatively stable in its upper reach. Below the man made impoundment, however, the stream is ditched. Throughout the surveyed area the UT was very small, rarely over 3 feet in width making freshwater mussel habitat marginal. No freshwater mussels, snails, or the Asian clam were found in this UT.

Dulla Thoroughfare and UT to Dulla Thoroughfare:

The approximately 100 meters of the Dulla Thoroughfare connection to the mainstem Rocky River surveyed was an agricultural ditch characterized by unconsolidated sand, silt and mud substrate. No mollusks were observed here and freshwater mussel habitat was not appropriate. Cursory habitat examinations in several other locations revealed the stream to be degraded and often ditched, especially in the reaches intended for restoration. Due to these factors and the relatively small size of the streams, especially in the UT, it was determined that Dulla Thoroughfare and its UT contained no appropriate habitat for freshwater mussels.

Rocky River:

The proposed restoration efforts in Dulla Thoroughfare extend to its confluence with the mainstem Rocky River, thus the Rocky River was surveyed approximately 400 meters downstream of this confluence. A short reach above the confluence was also surveyed for habitat comparison. A variety of appropriate mussel habitats persists in this reach of the Rocky River and represents the best potential habitat that may be impacted as a result of the restoration efforts. Despite this fact and the acceptable survey conditions, no freshwater mussels were found in this reach. The only freshwater mollusk located was the Asian clam (*Corbicula fluminea*), which was common.

DISCUSSION

The streams within the Bishop tract proposed for restoration efforts are, for the most part, not appropriate habitat for freshwater mussels. This is due to their generally degraded, altered states resulting from the surrounding agricultural land use. Within the UT to Camp Branch and UT Dulla Thoroughfare, their small size seems to be the main factor limiting appropriate mussel habitat. The Rocky River represents the best freshwater mussel habitat within the vicinity of the Bishop tract, however, no mussels were found during the survey. It is possible that a remnant population of freshwater mussels exists downstream of the project area in the Rocky River as mussel populations within the mainstem of the Rocky River have been documented as recently as 2004. However, due to the sensitive nature of the Carolina heelsplitter, it is very unlikely that it is part of the freshwater mussel fauna potentially present in the Rocky River downstream of the Bishop Tract. It is therefore anticipated that the proposed stream mitigation within the Bishop Tract is **"Not Likely To Adversely Effect"** the Carolina heelsplitter.

REFERENCES

- Alderman, J. M. (1995). Monitoring the Swift Creek Freshwater mussel community. <u>Unpublished report presented at the UMRCC symposium on the Conservation and</u> <u>Management of Freshwater Mussels II Initiative for the Future.</u> Rock Island, IL, UMRCC.
- Clarke, A. H. (1985). <u>The tribe Alasmidontini (Unionidae: Anodontinae)</u>, Part II: <u>Lasmigona and Simpsonaias</u>.
- Ellis, M. M. (1936). "Erosion Silt as a Factor in Aquatic Environments." Ecology 17: 29-42.
- Fuller, S. L. H. and C. E. Powell (1973). "Range extensions of *Corbicula manilensis* (Philippi) in the Atlantic drainage of the United States." <u>Nautilus</u> 87(2): 59.
- Goudreau, S. E., R. J. Neves, et al. (1988). Effects of Sewage Treatment Effluents on Mollusks and Fish of the Clinch River in Tazewell County, Virginia. USFWS: 128.
- Keferl, E. P. (1991). "A status survey for the Carolina heelsplitter (Lasmigona decorata). A freshwater mussel endemic to the Carolinas." <u>Unpublished report to US Fish and Wildlife Service</u>.
- Keferl, E. P. and R. M. Shelly (1988). The Final Report on a Status Survey of the Carolina Heelsplitter, Lasmigona decorata, and the Carolina elktoe, Alasmidonta robusta, Unpublished Report to the U.S. Dept of the Interior, Fish and Wildlife Service: 47.
- Lea, I. (1852). "Description of a new species of the family Unionidae." <u>Transactions of the</u> <u>American Philosophical Society</u> 10: 253-294.

TCG- Freshwater Mussel Surveys Bishop Tract Mitigation Site, Anson County, NC

- Markings, L. L. and T. D. Bills (1979). <u>Acute Effects of Silt and Sand Sedimentation on</u> <u>Freshwater Mussels</u>. UMRCC Symposium on the Upper Mississippi River bivalve Mollusks, Rock Island, IL, UMRCC.
- Neves, R. J. (1993). A State of the Unionids Address. <u>UMRCC symposium on the</u> <u>Conservation and Management of Freshwater Mussels.</u> C. K.S., A. C. Buchanan and L. M. Kooch. Rock Island, IL, UMRCC. **Proceedings in the UMRCC symposium** on the Conservation and Management of Freshwater Mussels: 1-10.
- Neves, R. J. and J. C. Widlak (1987). "Habitat Ecology of Juvenile Freshwater Mussels (*Bivalva: Unionidae*) in a Headwater Stream in Virginia." <u>American Malacological</u> <u>Bulletin</u> 1(5): 1-7.
- Pennak, R. W. (1989). Fresh-water Invertebrates of the United States, Protozoa to Mollusca. New York, John Wiley & Sons, Inc.
- USFWS (1992 a). Special report on the status of freshwater mussels.
- USFWS (1992 b). Endangered and Threatened species of the southeast United States (The Red Book). FWS, Ecological Services, Div. of Endangered Species, Southeast Region. Govt Printing Office, Wash, DC: 1,070.
- USFWS (1996). Revised Technical/Agency Draft Carolina Heelsplitter Recovery Plan, Atlanta, GA: 47.

APPENDIX F

NOTIFICATION OF JURISDICTIONAL DETERMINATION

U.S. ARMY CORPS OF ENGINEERS Wilmington District

Action ID: 200430199

County: Anson

Notification of Jurisdictional Determination

Property Owner: NCDOT Address: Gregory J. Thorpe, Project **Development and Environmental Analysis 1548 Mail Service Center** Raleigh, NC 27699-1548 Telephone: 919-733-3141

Authorized Agent: EcoScience Corporation Attn: W. Grant Lewis **Address: 1101 Haynes Street** Suite 101, Raleigh, NC 27604 Telephone:919-828-3433

Size and Location of Property (waterbody, Highway name/number, town, etc.): Bishop Property Stream and Wetland Mitigation Site, Approximately 930-acre parcel adjacent to the Rocky River off Carpenter Road north of Ansonville in the Yadkin/Pee Dee River Basin

Basis for Determination: Delineation Maps and GPS surveys dated January 27, 2004 with accompanying Wetland Data Forms and Stream Assessment Worksheets from August and September 2003 identifying hydric soil, wetland hydrology, hydrophytic vegetation, stream flow, an ordinary high waterline and surface hydrologic connections to the Yadkin/Pee Dee River System.

Indicate Which of the Following apply:

The wetlands and surface waters on this project have been delineated and the limits of the Corps jurisdiction have been explained to you. Unless there is a change in the law or our published regulations, this determination may be relied upon for a period not to exceed five years from the date of this notification.

Placement of dredged or fill material in streams and wetlands on this property without a Department of the Army permit is in most cases a violation of Section 301 of the Clean Water Act (33 USC 1311). A permit is not required for work on the property restricted entirely to existing high ground. If you have any questions regarding the Corps of Engineers regulatory program. please contact

Steven W. Lund at 828-271-7980 x 223.

Date: January 13, 2004

Project Manager Signature <u>Stemm W. L</u>

Expiration Date: January 13, 2009

SURVEY PLAT OR FIELD SKETCH OF DESCRIBED PROPERTY AND THE WETLAND DELINEATION FORM MUST BE ATTACHED TO THIS FORM.